37 research outputs found

    CuO Elaboration and Studies of the Influence of Heat Treatment on the Structural Properties

    Get PDF
    In the present work we synthesize nano powders of CuO by precipitation method, using CuCl2 as precursor. The obtained powder has undergone a heat treatment annealing 100°C, and 450°C. Structural analysis by X-Ray diffraction, Fourier transform infrared (FTIR) microscopy and scanning electron microscopy (SEM) reveal that CuO nano particles are in nano graphs forms and with improved crystallization at 450°C, annealing temperature as monoclinic crystal lattice structure. The radius of NCs calculated by the Scherrer formula is 12.31 nm

    CuO Elaboration and Studies of the Influence of Heat Treatment on the Structural Properties

    Get PDF
    In the present work we synthesize nano powders of CuO by precipitation method, using CuCl2 as precursor. The obtained powder has undergone a heat treatment annealing 100°C, and 450°C. Structural analysis by X-Ray diffraction, Fourier transform infrared (FTIR) microscopy and scanning electron microscopy (SEM) reveal that CuO nano particles are in nano graphs forms and with improved crystallization at 450°C, annealing temperature as monoclinic crystal lattice structure. The radius of NCs calculated by the Scherrer formula is 12.31 nm

    The impact of the urban canyon geometry in the nocturnal heat island intensity: analysis by a simplified model adapted to a GIS

    Get PDF
    A geometria urbana é um dos fatores de maior influência na intensidade da ilha de calor urbana. Seu estudo requer a caracterização de cânions urbanos, geralmente medidos pela relação entre a altura dos edifícios e a largura da rua (H/W), conceito aplicado no modelo numérico de Oke em 1981. O objetivo deste artigo é verificar o impacto da geometria do cânion urbano na intensidade de ilhas de calor noturna. Para isso, foram realizados levantamento de dados climáticos e de geometria urbana em duas cidades brasileiras. Os valores de intensidade de ilha de calor foram confrontados com os simulados pelo modelo original de Oke (1981), o qual foi calibrado e adaptado à plataforma SIG, de forma a possibilitar a incorporação de outro parâmetro de geometria, além da relação H/W: o comprimento de rugosidade. Esse processo gerou uma nova ferramenta de cálculo, que é denominda THIS (Tool for Heat Island Simulation). Aplicou-se o novo modelo para simular alguns cenários urbanos hipotéticos, que representam vários tipos de cânions urbanos. Os resultados demonstraram que cânions urbanos de maior rugosidade amenizam as intensidades de ilha de calor noturna em relação a um cânion de mesmo valor de relação H/W e menor rugosidade.Urban geometry is one of the main factors influencing the development of urban heat islands. The study of urban geometry requires a characterization of urban canyons, which can be usually measured by the H/W ratio (a relationship between the height and the width of a street), a concept applied in a numerical model by Oke in 1981. The aim of this paper is to verify the impact of the canyon geometry on the intensity of the nocturnal urban heat islands. For this purpose, measurements of climate data and urban geometry were conducted in two Brazilian cities. The values of heat island intensity were cross-examined to those generated with the application of the original Oke's model. Therefore, this latter was calibrated and adapted to run in a GIS platform, allowing the incorporation of a geometric parameter other than the H/W ratio - the roughness length. Then, this process produced a new calculation tool, which is called THIS (Tool for Heat Island Simulation). The new model was applied to simulate some hypothetical urban scenarios representing several urban canyons types. The results showed that the urban canyons with the largest roughness reduce the nocturnal heat island intensities in relation to an urban canyon of the same H/W value, but presenting lower roughness rates instead.Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Involvement of the Periaqueductal Gray in the Descending Antinociceptive Effect Induced by the Central Nucleus of Amygdala

    Get PDF
    Here we studied whether descending control of mechanical nociception by glutamate in the central nucleus of the amygdala (CeA) of healthy control animals is induced by amygdaloid NMDA receptors and relayed through the midbrain periaqueductal gray (PAG). Mechanical nociception in the hind paws was assessed in rats with chronic guide cannulae for glutamate administration in the right CeA and for inducing local anesthesia in the PAG. In a separate electrophysiological study, ON-like PAG neurons giving an excitatory response to noxious pinch of the tail were recorded in anesthetized rats following glutamate administration into the CeA. A high dose of glutamate (100 mu g) in the CeA induced mechanical antinociception in the contra- but not ipsilateral hind limb. Antinociception was prevented by an NMDA receptor antagonist in the CeA or local anesthesia of the PAG. Discharge rate of ON-like PAG neurons was increased by a high dose of glutamate (100 mu g) in the CeA and this increase was prevented by an NMDA receptor antagonist in the CeA. The results indicate that amygdaloid NMDA receptors in the CeA may induce contralaterally mechanical antinociception through a circuitry relaying in the PAG. Activation of ON-like PAG neurons is associated with the descending antinociceptive effect. Mechanisms and causality of this association still remain to be studied.Peer reviewe

    A missense mutation in zinc finger homeobox‐3 (ZFHX3) impedes growth and alters metabolism and hypothalamic gene expression in mice

    Get PDF
    A protein altering variant in the gene encoding zinc finger homeobox-3 (ZFHX3) has recently been associated with lower BMI in a human genome-wide association study. We investigated metabolic parameters in mice harboring a missense mutation in Zfhx3 (Zfhx3Sci/+) and looked for altered in situ expression of transcripts that are associated with energy balance in the hypothalamus to understand how ZFHX3 may influence growth and metabolic effects. One-year-old male and female Zfhx3Sci/+ mice weighed less, had shorter body length, lower fat mass, smaller mesenteric fat depots, and lower circulating insulin, leptin, and insulin-like growth factor-1 (IGF1) concentrations than Zfhx3+/+ littermates. In a second cohort of 9–20-week-old males and females, Zfhx3Sci/+ mice ate less than wildtype controls, in proportion to body weight. In a third cohort of female-only Zfhx3Sci/+ and Zfhx3+/+ mice that underwent metabolic phenotyping from 6 to 14 weeks old, Zfhx3Sci/+ mice weighed less and had lower lean mass and energy expenditure, but fat mass did not differ. We detected increased expression of somatostatin and decreased expression of growth hormone-releasing hormone and growth hormone-receptor mRNAs in the arcuate nucleus (ARC). Similarly, ARC expression of orexigenic neuropeptide Y was decreased and ventricular ependymal expression of orphan G protein-coupled receptor Gpr50 was decreased. We demonstrate for the first time an energy balance effect of the Zfhx3Sci mutation, likely by altering expression of key ARC neuropeptides to alter growth, food intake, and energy expenditure

    Forward genetics identifies a novel sleep mutant with sleep state inertia and REM sleep deficits

    Get PDF
    Switches between global sleep and wakefulness states are believed to be dictated by top-down influences arising from subcortical nuclei. Using forward genetics and in vivo electrophysiology, we identified a recessive mouse mutant line characterized by a substantially reduced propensity to transition between wake and sleep states with an especially pronounced deficit in initiating rapid eye movement (REM) sleep episodes. The causative mutation, an lle102Asn substitution in the synaptic vesicular protein, VAMP2, was associated with morphological synaptic changes and specific behavioral deficits, while in vitro electrophysiological investigations with fluorescence imaging revealed a markedly diminished probability of vesicular release in mutants. Our data show that global shifts in the synaptic efficiency across brain-wide networks leads to an altered probability of vigilance state transitions, possibly as a result of an altered excitability balance within local circuits controlling sleep-wake architecture.ISSN:2375-254
    corecore