3,448 research outputs found
Low-Cost Experiments with Everyday Objects for Homework Assignments
We describe four classical undergraduate physics experiments that were done
with everyday objects and low-cost sensors: mechanical oscillations,
transmittance of light through a slab of matter, beam deformation under load,
and thermal relaxation due to heat loss. We used these experiments to train
students for experimental homework projects but they could be used and expanded
in a variety of contexts: lecture demonstrations, low cost students' labs,
science projects, distance learning courses...Comment: details on students where added : a section dedicated to the student
difficulties and general feedback on this teaching unit. Minor typos were
fixed. Published in Physics Educatio
Dynamical stability for the gravitational evolution of a homogeneous polytrope
URL: http://www-spht.cea.fr/articles/s00/008 Stabilité dynamique de l'évolution gravitationnelle d'un polytrope homogÚneThe dynamic stability of the spherical gravitational evolution (collapse or expansion) for a homogeneous polytropic gas with any exponent is studied using the lagrangian formalism. We obtain the analytical expression for density perturbations at the first order. In the case the Jeans'criterion is easily generalized to a self-similar expanding background. The collapsing case is found to be always unstable. The stability of density modes obtained for does not introduce any conditions on the wavelength perturbation, but only a criterion on the polytropic index. As a result, stability is obtained for an expanding gas provided $\gamma 5/3.
Specific heat of single crystal MgB_2: a two-band superconductor with two different anisotropies
Heat-capacity measurements of a 39 microgramm MgB_2 single crystal in fields
up to 14 T and below 3 K allow the determination of the low-temperature linear
term of the specific heat, its field dependence and its anisotropy. Our results
are compatible with two-band superconductivity, the band carrying the small gap
being isotropic, that carrying the large gap having an anisotropy of ~ 5. Three
different upper critical fields are thus needed to describe the superconducting
state of MgB2.Comment: 4 pages, 4 figures - V2: Bibliography updated and some typo
corrected. One reference added - V3: version accepted for publication in PRL,
changes made in the tex
A subset of precise UML for Model-based Testing
This paper presents an original model-based testing approach that takes a UML behavioural view of the system under test and automatically generates test cases and executable test scripts according to model coverage criteria. This approach is embedded in the LEIRIOS Test Designer tool and is currently deployed in domains such as Enterprise IT and electronic transaction applications. This model-based testing approach makes it possible to automatically produce the traceability matrix from requirements to test cases as part of the test generation process. This paper defines the subset of UML used for model-based testing and illustrates it using a small example
Similarity Properties and Scaling Laws of Radiation Hydrodynamic Flows in Laboratory Astrophysics
The spectacular recent development of modern high-energy density laboratory
facilities which concentrate more and more energy in millimetric volumes allows
the astrophysical community to reproduce and to explore, in millimeter-scale
targets and during very short times, astrophysical phenomena where radiation
and matter are strongly coupled. The astrophysical relevance of these
experiments can be checked from the similarity properties and especially
scaling laws establishment, which constitutes the keystone of laboratory
astrophysics. From the radiating optically thin regime to the so-called
optically thick radiative pressure regime, we present in this paper, for the
first time, a complete analysis of the main radiating regimes that we
encountered in laboratory astrophysics with the same formalism based on the
Lie-group theory. The use of the Lie group method appears as systematic which
allows to construct easily and orderly the scaling laws of a given problem.
This powerful tool permits to unify the recent major advances on scaling laws
and to identify new similarity concepts that we discuss in this paper and which
opens important applications for the present and the future laboratory
astrophysics experiments. All these results enable to demonstrate theoretically
that astrophysical phenomena in such radiating regimes can be explored
experimentally thanks to powerful facilities. Consequently the results
presented here are a fundamental tool for the high-energy density laboratory
astrophysics community in order to quantify the astrophysics relevance and
justify laser experiments. Moreover, relying on the Lie-group theory, this
paper constitutes the starting point of any analysis of the self-similar
dynamics of radiating fluids.Comment: Astrophys. J. accepte
Effect of density of state on isotope effect exponent of two-band superconductors
The exact formula of Tc's equation and the isotope effect exponent of
two-band s-wave superconductors in weak-coupling limit are derived by
considering the influence of two kinds of density of state : constant and van
Hove singularity. The pairing interaction in each band consisted of 2 parts :
the electron-phonon interaction and non-electron-phonon interaction are
included in our model. We find that the interband interaction of
electron-phonon show more effect on isotope exponent than the intraband
interaction and the isotope effect exponent with constant density of state can
fit to an experimental data,MgB2, and high-Tc superconductors, better than van
Hove singularity density of state.Comment: 11 pages. accepted in Physica
Infrared properties of MgAlBC) single crystals in the normal and superconducting state
The reflectivity of -oriented MgAl(BC) single crystals has been measured by means of infrared
microspectroscopy for cm. An increase with doping of
the scattering rates in the and bands is observed, being more
pronounced in the C doped crystals. The -band plasma frequency also
changes with doping due to the electron doping, while the -band one is
almost unchanged. Moreover, a interband excitation, predicted
by theory, is observed at eV in the undoped sample,
and shifts to lower energies with doping. By performing theoretical calculation
of the doping dependence , the experimental observations can be
explained with the increase with electron doping of the Fermi energy of the
holes in the -band. On the other hand, the band density of
states seems not to change substantially. This points towards a reduction
driven mainly by disorder, at least for the doping level studied here. The
superconducting state has been also probed by infrared synchrotron radiation
for cm in one pure and one C-doped sample. In the
undoped sample ( = 38.5 K) a signature of the -gap only is observed.
At = 0.08 ( = 31.9 K), the presence of the contribution of the
-gap indicates dirty-limit superconductivity in both bands.Comment: 12 pages, 9 figure
Thermal properties of MgB2: the effect of disorder on gap amplitudes and relaxation times of p and s bands
We present thermal conductivity and specific heat measurements on MgB2 and
Mg-AlB2 samples. Thermal properties have been analysed by using a two-gap model
in order to estimate the gap amplitudes, D(0)p and D(0)s and the intra-band
scattering rates, Gss and Gpp. As a function of Al doping and disorder D(0)s
rapidly decreases, while D(0)p is rather constant. Gss and Gpp are increased by
the disorder, being Gpp more affected than Gss.Comment: 2 pages, 3 figures, presented to the conference M2S-HTSC, 25-30 May
2003, Rio de Janeir
Modeling multidimensional effects in the propagation of radiative shocks
Radiative shocks (also called supercritical shocks) are high Mach number shock waves that photoionize the medium ahead of the shock front and give rise to a radiative precursor. They are generated in the laboratory using high-energy or high-power lasers and are frequently present in a wide range of astronomical objects. Their modelisation in one dimension has been the subject of numerous studies, but generalization to three dimensions is not straightforward. We calculate analyticaly the absorption of radiation in a grey uniform cylinder and show how it decreases with , the product of the opacity and of the cylinder radius . Simple formulas, whose validity range increases when diminishes, are derived for the radiation field on the axis of symmetry. Numerical calculations in three dimensions of the radiative energy density, flux and pressure created by a stationary shock wave show how the radiation decreases whith . Finally, the bidimensional structures of both the precursor and the radiation field are calculated with time-dependent radiation hydrodynamics numerical simulations and the influence of two-dimensional effects on the electron density, the temperature, the shock velocity and the shock geometry are exhibited. These simulations show how the radiative precursor shortens, cools and slows down when is decreased
- âŠ