14 research outputs found

    SUPPRESSION OF INCIDENCE OF RHIZOCTONIA SOLANI IN RICE BY SIDEROPHORE PRODUCING RHIZOBACTERIAL STRAINS BASED ON COMPETITION FOR IRON

    Get PDF
    Rice is a major crop in much of the developing world, where disease management using agrochemicals is not economically practical, nor environmentally safe. The identification of biocontrol agents therefore presents a useful alternative. Here, we screened bacterial strains isolated from the rhizosphere of rice plants, and identified a number of these that exhibit antagonistic activity towards the fungal pathogen, Rhizoctonia solani, the causative agent of rice sheath blight disease. Correlation analysis with different metabolites produced by these bacteria revealed that antagonism was strongly correlated with the quantity of siderophores produced by individual strains, and was increased under iron-limiting conditions. Selected high-siderophore-producing strains were found to promote the growth of rice plants, possibly via the solubilisation of soil phosphates, nitrogen fixation and the production of phytohormones. These same PGPR also conferred resistance against sheath blight disease, which resulted in significant yield increases in infected plants. A consortium of the selected strains was especially effective in both growth promotion and disease suppression, and generally performed better than treatment with the fungicide, benlate. Molecular analysis indicated that the PGPR strains tested enhance plant defence gene expression, and may therefore activate induced systemic resistance in rice. Our work has identified a series of rhizobacterial strains able to promote plant growth and provide effective resistance against sheath blight disease in rice and which therefore have potential for application as biocontrol agents in agriculture

    SUPPRESSION OF INCIDENCE OF RHIZOCTONIA SOLANI IN RICE BY SIDEROPHORE PRODUCING RHIZOBACTERIAL STRAINS BASED ON COMPETITION FOR IRON

    Get PDF
    Rice is a major crop in much of the developing world, where disease management using agrochemicals is not economically practical, nor environmentally safe. The identification of biocontrol agents therefore presents a useful alternative. Here, we screened bacterial strains isolated from the rhizosphere of rice plants, and identified a number of these that exhibit antagonistic activity towards the fungal pathogen, Rhizoctonia solani, the causative agent of rice sheath blight disease. Correlation analysis with different metabolites produced by these bacteria revealed that antagonism was strongly correlated with the quantity of siderophores produced by individual strains, and was increased under iron-limiting conditions. Selected high-siderophore-producing strains were found to promote the growth of rice plants, possibly via the solubilisation of soil phosphates, nitrogen fixation and the production of phytohormones. These same PGPR also conferred resistance against sheath blight disease, which resulted in significant yield increases in infected plants. A consortium of the selected strains was especially effective in both growth promotion and disease suppression, and generally performed better than treatment with the fungicide, benlate. Molecular analysis indicated that the PGPR strains tested enhance plant defence gene expression, and may therefore activate induced systemic resistance in rice. Our work has identified a series of rhizobacterial strains able to promote plant growth and provide effective resistance against sheath blight disease in rice and which therefore have potential for application as biocontrol agents in agriculture

    Unravelling the mechanisms of biocontrol in the tomato-fusarium oxysporum f. sp. lycopersici-Brevibacillus brevis interaction

    No full text
    The present study was carried out to determine the mechanisms of biological control of Fusarium oxysporum f.sp. lycopersici by Brevibacillus brevis under greenhouse conditions.  Dual culture techniques demonstrated that B. brevis is capable of inhibiting the growth of fungal mycelium and germination of fungal spores due to excretion of antifungal metabolite(s) into the substrate, while reciprocal in vitro tests demonstrated no impacts of F. oxysporum f.sp. lycopersici metabolites on viability of B. brevis.  When live tomato roots were introduced into microcosms containing F. oxysporum f.sp. lycopersici and B. brevis, however, the fungal pathogen showed a competitive advantage over controls without B. brevis in terms of host colonisation.  The steroidal glycoalkaloid α-tomatine, extracted from tomato, inhibited conidiospore germination and growth of Fusarium oxysporum f.sp lycopersici, but had no detectable effects on viability of B. brevis. The effects of preinoculation of tomato (Lycopersicon esculentum, variety Moneymaker) roots with B. brevis in presence and absence of F. oxysporum f.sp. lycopersici on the induction of defence enzymes was examined.  Varying activities of phenylalanine ammonia lyase (PAL), peroxidases (POX) and chitinases were observed in different treatments at different time points, suggesting that the genes encoding these enzymes play a role in defence against Fusarium wilt.  Although no direct evidence of induction of these enzymes by B. brevis alone was observed, plants which were preinoculated with the bacterium showed enhanced induction of PAL, POX and chitinases at different time points following subsequent inoculation with F. oxysporum f.sp. lycopersici. Complex interactions between the tomato plant, B. brevis and F. oxysporum f.sp. lycopersici occurred and changed with time, as indicated by variations in metabolites at different sampling times.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    In Silico Evaluation, Phylogenetic Analysis, and Structural Modeling of the Class II Hydrophobin Family from Different Fungal Phytopathogens

    No full text
    The class II hydrophobin group (HFBII) is an extracellular group of proteins that contain the HFBII domain and eight conserved cysteine residues. These proteins are exclusively secreted by fungi and have multiple functions with a probable role as effectors. In the present study, a total of 45 amino acid sequences of hydrophobin class II proteins from different phytopathogenic fungi were retrieved from the NCBI database. We used the integration of well-designed bioinformatic tools to characterize and predict their physicochemical parameters, novel motifs, 3D structures, multiple sequence alignment (MSA), evolution, and functions as effector proteins through molecular docking. The results revealed new features for these protein members. The ProtParam tool detected the hydrophobicity properties of all proteins except for one hydrophilic protein (KAI3335996.1). Out of 45 proteins, six of them were detected as GPI-anchored proteins by the PredGPI server. Different 3D structure templates with high pTM scores were designed by Multifold v1, AlphaFold2, and trRosetta. Most of the studied proteins were anticipated as apoplastic effectors and matched with the ghyd5 gene of Fusarium graminearum as virulence factors. A protein–protein interaction (PPI) analysis unraveled the molecular function of this group as GTP-binding proteins, while a molecular docking analysis detected a chitin-binding effector role. From the MSA analysis, it was observed that the HFBII sequences shared conserved 2 Pro (P) and 2 Gly (G) amino acids besides the known eight conserved cysteine residues. The evolutionary analysis and phylogenetic tree provided evidence of episodic diversifying selection at the branch level using the aBSREL tool. A detailed in silico analysis of this family and the present findings will provide a better understanding of the HFBII characters and evolutionary relationships, which could be very useful in future studies

    Arbuscular mycorrhizal fungi as an effective approach to enhance the growth and metabolism of soybean plants under thallium (TI) toxicity

    No full text
    Abstract: Thallium (TI) is a toxic metal that can trigger harmful impacts on growth and metabolism of plants. Utilizing arbuscular mycorrhizal fungi (AMF) proves to be an effective strategy for alleviating heavy metal toxicity in plants. To this end, AMF were applied to mitigate TI toxic effects on the growth, primary and secondary metabolism of soybean plants. Here, TI stress inhibited the growth and photosynthetic parameters of soybean plants. It also increased the oxidative damage as demonstrated by increased levels of oxidative markers, (MDA and lipoxygenase (LOX) activity). However, AMF could mitigate the reduction in growth and photosynthesis induced by TI, as well as the induction of oxidative damage. To overcome TI toxicity, AMF increased the levels and metabolism of osmolytes such as proline in soybean plants. This was in line with the increased activities of key enzymes that involved in proline biosynthesis (e.g., P5CS (pyrroline-5-carboxylate synthetase), P5CR (pyr-roline-5-carboxylate reductase) and OAT (ornithine aminotransferase) under the AMF and/or TI treatments. Furthermore, soybean plants could benefit from the synergism between AMF and TI to enhance the contents of individual (e.g., spermine and spermidine) and total polyamines as well as their metabolic enzymes (e.g., arginine decarboxylase and ornithine decarboxylase). Overall, the combined application of AMF emerges as a viable approach for alleviating TI toxicity in soybean plants

    The Antifungal Activity of Ag/CHI NPs against <i>Rhizoctonia solani</i> Linked with Tomato Plant Health

    No full text
    Pathogenic infestations are significant threats to vegetable yield, and have become an urgent problem to be solved. Rhizoctonia solani is one of the worst fungi affecting tomato crops, reducing yield in some regions. It is a known fact that plants have their own defense against such infestations; however, it is unclear whether any exogenous material can help plants against infestation. Therefore, we performed greenhouse experiments to evaluate the impacts of R. solani on 15- and 30-day old tomato plants after fungal infestation, and estimated the antifungal activity of nanoparticles (NPs) against the pathogen. We observed severe pathogenic impacts on the above-ground tissues of tomato plants which would affect plant physiology and crop production. Pathogenic infection reduced total chlorophyll and anthocyanin contents, which subsequently disturbed plant physiology. Further, total phenolic contents (TPC), total flavonoid contents (TFC), and malondialdehyde (MDA) contents were significantly increased in pathogen treatments. Constitutively, enhanced activities were estimated for catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) in response to reactive oxygen species (ROS)in pathogen-treated plants. Moreover, pathogenesis-related genes, namely, chitinase, plant glutathione S-transferase (GST), phenylalanine ammonia-lyase (PAL1), pathogenesis-related protein (PR12), and pathogenesis-related protein (PR1) were evaluated, with significant differences between treated and control plants. In vitro and greenhouse antifungal activity of silver nanoparticles (Ag NPs), chitosan nanoparticles, and Ag NPs/CHI NPs composites and plant health was studied using transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectrophotometry. We found astonishing results, namely, that Ag and CHI have antifungal activities against R. solani. Overall, plant health was much improved following treatment with Ag NPs/CHI NPs composites. In order to manage R. solani pathogenicity and improve tomato health, Ag/CHI NPs composites could be used infield as well as on commercial levels based on recommendations. However, there is an urgent need to first evaluate whether these NP composites have any secondary impacts on human health or the environment

    The Antifungal Activity of Ag/CHI NPs against Rhizoctonia solani Linked with Tomato Plant Health

    No full text
    Pathogenic infestations are significant threats to vegetable yield, and have become an urgent problem to be solved. Rhizoctonia solani is one of the worst fungi affecting tomato crops, reducing yield in some regions. It is a known fact that plants have their own defense against such infestations; however, it is unclear whether any exogenous material can help plants against infestation. Therefore, we performed greenhouse experiments to evaluate the impacts of R. solani on 15- and 30-day old tomato plants after fungal infestation, and estimated the antifungal activity of nanoparticles (NPs) against the pathogen. We observed severe pathogenic impacts on the above-ground tissues of tomato plants which would affect plant physiology and crop production. Pathogenic infection reduced total chlorophyll and anthocyanin contents, which subsequently disturbed plant physiology. Further, total phenolic contents (TPC), total flavonoid contents (TFC), and malondialdehyde (MDA) contents were significantly increased in pathogen treatments. Constitutively, enhanced activities were estimated for catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) in response to reactive oxygen species (ROS)in pathogen-treated plants. Moreover, pathogenesis-related genes, namely, chitinase, plant glutathione S-transferase (GST), phenylalanine ammonia-lyase (PAL1), pathogenesis-related protein (PR12), and pathogenesis-related protein (PR1) were evaluated, with significant differences between treated and control plants. In vitro and greenhouse antifungal activity of silver nanoparticles (Ag NPs), chitosan nanoparticles, and Ag NPs/CHI NPs composites and plant health was studied using transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectrophotometry. We found astonishing results, namely, that Ag and CHI have antifungal activities against R. solani. Overall, plant health was much improved following treatment with Ag NPs/CHI NPs composites. In order to manage R. solani pathogenicity and improve tomato health, Ag/CHI NPs composites could be used infield as well as on commercial levels based on recommendations. However, there is an urgent need to first evaluate whether these NP composites have any secondary impacts on human health or the environment
    corecore