897 research outputs found

    Changes in invertebrate assemblage composition in benthic and hyporheic zones during a severe supraseasonal drought

    Get PDF
    Droughts are unpredictable disturbances characterized in streams by declining flow, reduced habitat availability, and deteriorating abiotic conditions. Such events typically reduce benthic invertebrate taxon richness and modify assemblage composition, but little is known about how hyporheic invertebrate assemblages respond to drought or how these responses relate to changes in benthic assemblages. We hypothesized that taxon richness (diversity) and variability (as within-site diversity) in benthic assemblage composition would decline as drought proceeded, whereas concurrent changes in hyporheic assemblages would be lower in this more stable environment. We predicted that benthic assemblage composition between sites would converge as epigean taxa were selectively eliminated, whereas between-site hyporheic diversity would change little. We sampled benthic and hyporheic invertebrates concurrently from 4 sites along a groundwater-fed stream during the final stages of a severe supraseasonal drought punctuated by a record heat wave. Abiotic conditions in benthic habitats deteriorated as flow declined, but changes were less pronounced in the hyporheic zone. Benthic diversity declined during drought, whereas hyporheic diversity changed little. However, benthic within-site diversity increased as the drought progressed because of localized variation in the abundance of common taxa. Temporal trends in hyporheic diversity were less consistent. Benthic assemblages at individual sites became more similar, especially during the heat wave, reflecting low diversity and abundance. Hyporheic assemblages changed markedly because of temporary increases in abundances of epigean and hypogean amphipods. These contrasting responses of benthic and hyporheic assemblages to drought should be recognized when developing management strategies for drought-impacted streams

    The Visualization of Biofilms in Chronic Diabetic Foot Wounds Using Routine Diagnostic Microscopy Methods

    Get PDF
    Diabetic foot wounds are commonly colonised by taxonomically diverse microbial communities and may additionally be infected with specific pathogens. Since biofilms are demonstrably less susceptible to antimicrobial agents than are planktonic bacteria, and may be present in chronic wounds, there is increasing interest in their aetiological role. In the current investigation, the presence of structured microbial assemblages in chronic diabetic foot wounds is demonstrated using several visualization methods. Debridement samples, collected from the foot wounds of diabetic patients, were histologically sectioned and examined using bright-field, fluorescence, and environmental scanning electron microscopy and assessed by quantitative differential viable counting. All samples (n = 26) harboured bioburdens in excess of 5 log10 CFU/g. Microcolonies were identified in 4/4 samples by all three microscopy methods, although bright-field and fluorescence microscopy were more effective at highlighting putative biofilm morphology than ESEM. Results in this pilot study indicate that bacterial microcolonies and putative biofilm matrix can be visualized in chronic wounds using florescence microscopy and ESEM, but also using the simple Gram stain

    The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes

    Get PDF
    The headwaters of karst rivers experience considerable hydrological variability, including spates and streambed drying. Extreme summer flooding on the River Lathkill (Derbyshire, UK) provided the opportunity to examine the invertebrate community response to unseasonal spate flows, flow recession and, at temporary sites, streambed drying. Invertebrates were sampled at sites with differing flow permanence regimes during and after the spates. Following streambed drying at temporary sites, dewatered surface sediments were investigated as a refugium for aquatic invertebrates. Experimental rehydration of these dewatered sediments was conducted to promote development of desiccation-tolerant life stages. At perennial sites, spate flows reduced invertebrate abundance and diversity, whilst at temporary sites, flow reactivation facilitated rapid colonisation of the surface channel by a limited number of invertebrate taxa. Following streambed drying, 38 taxa were recorded from the dewatered and rehydrated sediments, with Oligochaeta being the most abundant taxon and Chironomidae (Diptera) the most diverse. Experimental rehydration of dewatered sediments revealed the presence of additional taxa, including Stenophylax sp. (Trichoptera: Limnephilidae) and Nemoura sp. (Plecoptera: Nemouridae). The influence of flow permanence on invertebrate community composition was apparent despite the aseasonal high-magnitude flood events

    Relevance of large litter bag burial for the study of leaf breakdown in the hyporheic zone

    Get PDF
    Particulate organic matter is the major source of energy for most low-order streams, but a large part of this litter is buried within bed sediment during floods and thus become poorly available for benthic food webs. The fate of this buried litter is little studied. In most cases, measures of breakdown rates consist of burying a known mass of litter within the stream sediment and following its breakdown over time. We tested this method using large litter bags (15 x 15 cm) and two field experiments. First, we used litter large bags filled with Alnus glutinosa leaves (buried at 20 cm depth with a shovel) in six stations within different land-use contexts and with different sediment grain sizes. Breakdown rates were surprisingly high (0.0011–0.0188 day-1) and neither correlate with most of the physico-chemical characteristics measured in the interstitial habitats nor with the land-use around the stream. In contrast, the rates were negatively correlated with a decrease in oxygen concentrations between surface and buried bags and positively correlated with both the percentage of coarse particles (20–40 mm) in the sediment and benthic macro-invertebrate richness. These results suggest that the vertical exchanges with surface water in the hyporheic zone play a crucial role in litter breakdown. Second, an experimental modification of local sediment (removing fine particles with a shovel to increase vertical exchanges) highlighted the influence of grain size on water and oxygen exchanges, but had no effect on hyporheic breakdown rates. Burying large litter bags within sediments may thus not be a relevant method, especially in clogged conditions, due to changes induced through the burial process in the vertical connectivity between surface and interstitial habitats that modify organic matter processing

    The effects of climatic fluctuations and extreme events on running water ecosystems

    Get PDF
    Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world
    corecore