60 research outputs found

    Stabilization of Li-Rich Disordered Rocksalt Oxyfluoride Cathodes by Particle Surface Modification

    Get PDF
    Promising theoretical capacities and high voltages are offered by Li-rich disordered rocksalt oxyfluoride materials as cathodes in lithium-ion batteries. However, as has been discovered for many other Li-rich materials, the oxyfluorides suffer from extensive surface degradation, leading to severe capacity fading. In the case of Li2_{2}VO2_{2}F, we have previously determined this to be a result of detrimental reactions between an unstable surface layer and the organic electrolyte. Herein, we present the protection of Li2_{2}VO2_{2}F particles with AlF3_{3} surface modification, resulting in a much-enhanced capacity retention over 50 cycles. While the specific capacity for the untreated material drops below 100 mA h g−1^{-1} after only 50 cycles, the treated materials retain almost 200 mA h g−1^{-1}. Photoelectron spectroscopy depth profiling confirms the stabilization of the active material surface by the surface modification and reveals its suppression of electrolyte decomposition

    Accelerated multiscale & multiphysics modelling tools for battery cell manufacturing improvement

    Get PDF
    The recent launch of battery factories in Europe, motivates intense efforts to achieve cost-effective, scalable and sustainable battery manufacturing processes. Within DEFACTO project, multiscale multiphysics modelling tools are developed to increase lithium-ion battery (LIB) cell manufacturing process productivity and performance. A novel workflow framework that mimics the main cell manufacturing steps such as the electrode processing and electrolyte filling and later predicts cell performance and ageing is presented to turbocharge the development of next-generation LIBs. In addition, taking advantage of the characterization and manufacturing data to feed and validate the computational tools, the resulting workflow aims at providing deep understanding and therefore guidance to reduce the production process time and cost while increasing the overall efficiency of battery cells

    Revealing defects in crystalline lithium-ion battery electrodes by solid state NMR: applications to LiVPO4F

    Get PDF
    International audienceIdentifying and characterizing defects in crystalline solids is a challenging problem, particularly for lithium-ion intercalation materials, which often exhibit multiple stable oxidation and spin states as well as local ordering of lithium and charges. Here, we reveal the existence of characteristic lithium defect environments in the crystalline lithium-ion battery electrode LiVPO4F and establish the relative subnanometer-scale proximities between them. Well-crystallized LiVPO4F samples were synthesized with the expected tavorite-like structure, as established by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) measurements. Solid-state 7Li nuclear magnetic resonance (NMR) spectra reveal unexpected paramagnetic 7Li environments that can account for up to 20% of the total lithium content. Multidimensional and site-selective solid-state 7Li NMR experiments using finite-pulse radio frequency-driven recoupling (fp-RFDR) establish unambiguously that the unexpected lithium environments are associated with defects within the LiVPO4F crystal structure, revealing the existence of dipole–dipole-coupled defect pairs. The lithium defects exhibit local electronic environments that are distinct from lithium ions in the crystallographic LiVPO4F site, which result from altered oxidation and/or spin states of nearby paramagnetic vanadium atoms. The results provide a general strategy for identifying and characterizing lithium defect environments in crystalline solids, including paramagnetic materials with short 7Li NMR relaxation times on the order of milliseconds

    Contribution to the understanding of the structure of Li<sub>2</sub>MnO<sub>3</sub>, of its defects and of<br />derivative phases

    No full text
    Afin de mieux comprendre les Ă©volutions structurales mises en Ă©vidence dans les oxydes lamellaires de formule gĂ©nĂ©rale Li1+x(Ni0.425Mn0.425Co0.15)O2 utilisĂ©s comme Ă©lectrode positive pour batterie lithium-ion, la structure du composĂ© Li2MnO3 a Ă©tĂ© Ă©tudiĂ©e en dĂ©tail.Obtenu selon diffĂ©rentes voies de synthĂšses, rĂ©alisĂ©es Ă  diffĂ©rentes tempĂ©ratures, ce matĂ©riau qui peut ĂȘtre considĂ©rĂ© comme un matĂ©riau model Ă  fait l'objet d'une Ă©tude cristallographique oĂč l'utilisation de la microscopie Ă©lectronique a Ă©tĂ© privilĂ©giĂ©e. Deux types de dĂ©fauts ont Ă©tĂ© identifiĂ©s. D'une part, l'existence de fautes d'empilement au sein du matĂ©riau a Ă©tĂ© dĂ©montrĂ©e. Leurs consĂ©quences sur les clichĂ©s de diffraction Ă©lectronique et les diagrammes de diffraction des rayons-X ont Ă©tĂ©s expliquĂ©es permettant d'unifier les controverses prĂ©sentent Ă  ce sujet dans la littĂ©rature. D'autre part, l'Ă©tude de la stabilitĂ© thermique du composĂ© Li2MnO3 a mis en Ă©vidence l'apparition de dĂ©fauts de type « phase spinelle » en surface des grains lorsque la tempĂ©rature de traitement thermique devient supĂ©rieure ou Ă©gale Ă  900°C. Le traitement du matĂ©riau par la voie acide a pu ĂȘtre Ă©tudiĂ© et le mĂ©canisme de dĂ©sintercalation chimique du lithium par la voie acide a finalement pu ĂȘtre prĂ©cisĂ©. Il est montrĂ© que ce mĂ©canisme est le mĂȘme quelle que soit la taille des particules.In order to get a better understanding of the complex structural evolutions occurring in the layered oxides like Li1+x(Ni0.425Mn0.425Co0.15)O2 materials when they are used as positive electrodes in lithium batteries, the structure of Li2MnO3 has been studied in detail.Obtained from several synthesis ways, annealed at various temperatures, this compound that can be considered as a model one regarding these complex materials has been the object of a crystallographic study where the use of electron microscopy was privileged. Two kinds of defects could be identified. From one part, the existence of stacking faults in the Li2MnO3 material has been proved and they have been visualized for the first time. Their consequences on X ray and electron diffraction patterns are explained allowing the unification of discrepancies existing in the bibliography. For other part, the study of the thermal stability of Li2MnO3 evidenced the appearance of spinel type defects when the annealing treatment is performed above 900°C. Finally the delithiation by acid leaching is studied and the lithium extraction mechanism is clarified. It is shown that this mechanism is the same whatever the particle size is

    Contribution à la compréhension de la structure de Li<sub>2</sub>MnO<sub>3</sub>, de ses défauts et de phases dérivées

    No full text
    In order to get a better understanding of the complex structural evolutions occurring in the layered oxides like Li1+x(Ni0.425Mn0.425Co0.15)O2 materials when they are used as positive electrodes in lithium batteries, the structure of Li2MnO3 has been studied in detail.Obtained from several synthesis ways, annealed at various temperatures, this compound that can be considered as a model one regarding these complex materials has been the object of a crystallographic study where the use of electron microscopy was privileged. Two kinds of defects could be identified. From one part, the existence of stacking faults in the Li2MnO3 material has been proved and they have been visualized for the first time. Their consequences on X ray and electron diffraction patterns are explained allowing the unification of discrepancies existing in the bibliography. For other part, the study of the thermal stability of Li2MnO3 evidenced the appearance of spinel type defects when the annealing treatment is performed above 900°C. Finally the delithiation by acid leaching is studied and the lithium extraction mechanism is clarified. It is shown that this mechanism is the same whatever the particle size is.Afin de mieux comprendre les Ă©volutions structurales mises en Ă©vidence dans les oxydes lamellaires de formule gĂ©nĂ©rale Li1+x(Ni0.425Mn0.425Co0.15)O2 utilisĂ©s comme Ă©lectrode positive pour batterie lithium-ion, la structure du composĂ© Li2MnO3 a Ă©tĂ© Ă©tudiĂ©e en dĂ©tail.Obtenu selon diffĂ©rentes voies de synthĂšses, rĂ©alisĂ©es Ă  diffĂ©rentes tempĂ©ratures, ce matĂ©riau qui peut ĂȘtre considĂ©rĂ© comme un matĂ©riau model Ă  fait l'objet d'une Ă©tude cristallographique oĂč l'utilisation de la microscopie Ă©lectronique a Ă©tĂ© privilĂ©giĂ©e. Deux types de dĂ©fauts ont Ă©tĂ© identifiĂ©s. D'une part, l'existence de fautes d'empilement au sein du matĂ©riau a Ă©tĂ© dĂ©montrĂ©e. Leurs consĂ©quences sur les clichĂ©s de diffraction Ă©lectronique et les diagrammes de diffraction des rayons-X ont Ă©tĂ©s expliquĂ©es permettant d'unifier les controverses prĂ©sentent Ă  ce sujet dans la littĂ©rature. D'autre part, l'Ă©tude de la stabilitĂ© thermique du composĂ© Li2MnO3 a mis en Ă©vidence l'apparition de dĂ©fauts de type « phase spinelle » en surface des grains lorsque la tempĂ©rature de traitement thermique devient supĂ©rieure ou Ă©gale Ă  900°C. Le traitement du matĂ©riau par la voie acide a pu ĂȘtre Ă©tudiĂ© et le mĂ©canisme de dĂ©sintercalation chimique du lithium par la voie acide a finalement pu ĂȘtre prĂ©cisĂ©. Il est montrĂ© que ce mĂ©canisme est le mĂȘme quelle que soit la taille des particules

    Contribution à la compréhension de la structure de Li2MnO3, de ses défauts et de phases dérivées

    No full text
    In order to get a better understanding of the complex structural evolutions occurring in the layered oxides like Li1+x(Ni0.425Mn0.425Co0.15)O2 materials when they are used as positive electrodes in lithium batteries, the structure of Li2MnO3 has been studied in detail. Obtained from several synthesis ways, annealed at various temperatures, this compound that can be considered as a model one regarding these complex materials has been the object of a crystallographic study where the use of electron microscopy was privileged. Two kinds of defects could be identified. From one part, the existence of stacking faults in the Li2MnO3 material has been proved and they have been visualized for the first time. Their consequences on X ray and electron diffraction patterns are explained allowing the unification of discrepancies existing in the bibliography. For other part, the study of the thermal stability of Li2MnO3 evidenced the appearance of spinel type defects when the annealing treatment is performed above 900°C. Finally the delithiation by acid leaching is studied and the lithium extraction mechanism is clarified. It is shown that this mechanism is the same whatever the particle size is.Afin de mieux comprendre les Ă©volutions structurales mises en Ă©vidence dans les oxydes lamellaires de formule gĂ©nĂ©rale Li1+x(Ni0.425Mn0.425Co0.15)O2 utilisĂ©s comme Ă©lectrode positive pour batterie lithium-ion, la structure du composĂ© Li2MnO3 a Ă©tĂ© Ă©tudiĂ©e en dĂ©tail. Obtenu selon diffĂ©rentes voies de synthĂšses, rĂ©alisĂ©es Ă  diffĂ©rentes tempĂ©ratures, ce matĂ©riau qui peut ĂȘtre considĂ©rĂ© comme un matĂ©riau model Ă  fait l’objet d’une Ă©tude cristallographique oĂč l’utilisation de la microscopie Ă©lectronique a Ă©tĂ© privilĂ©giĂ©e. Deux types de dĂ©fauts ont Ă©tĂ© identifiĂ©s. D’une part, l’existence de fautes d’empilement au sein du matĂ©riau a Ă©tĂ© dĂ©montrĂ©e. Leurs consĂ©quences sur les clichĂ©s de diffraction Ă©lectronique et les diagrammes de diffraction des rayons-X ont Ă©tĂ©s expliquĂ©es permettant d’unifier les controverses prĂ©sentent Ă  ce sujet dans la littĂ©rature. D’autre part, l’étude de la stabilitĂ© thermique du composĂ© Li2MnO3 a mis en Ă©vidence l’apparition de dĂ©fauts de type « phase spinelle » en surface des grains lorsque la tempĂ©rature de traitement thermique devient supĂ©rieure ou Ă©gale Ă  900°C. Le traitement du matĂ©riau par la voie acide a pu ĂȘtre Ă©tudiĂ© et le mĂ©canisme de dĂ©sintercalation chimique du lithium par la voie acide a finalement pu ĂȘtre prĂ©cisĂ©. Il est montrĂ© que ce mĂ©canisme est le mĂȘme quelle que soit la taille des particules

    Contribution to the understanding of the structure of Li2MnO3, of its defects and of derivative phases

    No full text
    Afin de mieux comprendre les Ă©volutions structurales mises en Ă©vidence dans les oxydes lamellaires de formule gĂ©nĂ©rale Li1+x(Ni0.425Mn0.425Co0.15)O2 utilisĂ©s comme Ă©lectrode positive pour batterie lithium-ion, la structure du composĂ© Li2MnO3 a Ă©tĂ© Ă©tudiĂ©e en dĂ©tail. Obtenu selon diffĂ©rentes voies de synthĂšses, rĂ©alisĂ©es Ă  diffĂ©rentes tempĂ©ratures, ce matĂ©riau qui peut ĂȘtre considĂ©rĂ© comme un matĂ©riau model Ă  fait l’objet d’une Ă©tude cristallographique oĂč l’utilisation de la microscopie Ă©lectronique a Ă©tĂ© privilĂ©giĂ©e. Deux types de dĂ©fauts ont Ă©tĂ© identifiĂ©s. D’une part, l’existence de fautes d’empilement au sein du matĂ©riau a Ă©tĂ© dĂ©montrĂ©e. Leurs consĂ©quences sur les clichĂ©s de diffraction Ă©lectronique et les diagrammes de diffraction des rayons-X ont Ă©tĂ©s expliquĂ©es permettant d’unifier les controverses prĂ©sentent Ă  ce sujet dans la littĂ©rature. D’autre part, l’étude de la stabilitĂ© thermique du composĂ© Li2MnO3 a mis en Ă©vidence l’apparition de dĂ©fauts de type « phase spinelle » en surface des grains lorsque la tempĂ©rature de traitement thermique devient supĂ©rieure ou Ă©gale Ă  900°C. Le traitement du matĂ©riau par la voie acide a pu ĂȘtre Ă©tudiĂ© et le mĂ©canisme de dĂ©sintercalation chimique du lithium par la voie acide a finalement pu ĂȘtre prĂ©cisĂ©. Il est montrĂ© que ce mĂ©canisme est le mĂȘme quelle que soit la taille des particules.In order to get a better understanding of the complex structural evolutions occurring in the layered oxides like Li1+x(Ni0.425Mn0.425Co0.15)O2 materials when they are used as positive electrodes in lithium batteries, the structure of Li2MnO3 has been studied in detail. Obtained from several synthesis ways, annealed at various temperatures, this compound that can be considered as a model one regarding these complex materials has been the object of a crystallographic study where the use of electron microscopy was privileged. Two kinds of defects could be identified. From one part, the existence of stacking faults in the Li2MnO3 material has been proved and they have been visualized for the first time. Their consequences on X ray and electron diffraction patterns are explained allowing the unification of discrepancies existing in the bibliography. For other part, the study of the thermal stability of Li2MnO3 evidenced the appearance of spinel type defects when the annealing treatment is performed above 900°C. Finally the delithiation by acid leaching is studied and the lithium extraction mechanism is clarified. It is shown that this mechanism is the same whatever the particle size is

    Contribution to the understanding of the structure of Li2MnO3, of its defects and of derivative phases

    No full text
    Afin de mieux comprendre les Ă©volutions structurales mises en Ă©vidence dans les oxydes lamellaires de formule gĂ©nĂ©rale Li1+x(Ni0.425Mn0.425Co0.15)O2 utilisĂ©s comme Ă©lectrode positive pour batterie lithium-ion, la structure du composĂ© Li2MnO3 a Ă©tĂ© Ă©tudiĂ©e en dĂ©tail. Obtenu selon diffĂ©rentes voies de synthĂšses, rĂ©alisĂ©es Ă  diffĂ©rentes tempĂ©ratures, ce matĂ©riau qui peut ĂȘtre considĂ©rĂ© comme un matĂ©riau model Ă  fait l’objet d’une Ă©tude cristallographique oĂč l’utilisation de la microscopie Ă©lectronique a Ă©tĂ© privilĂ©giĂ©e. Deux types de dĂ©fauts ont Ă©tĂ© identifiĂ©s. D’une part, l’existence de fautes d’empilement au sein du matĂ©riau a Ă©tĂ© dĂ©montrĂ©e. Leurs consĂ©quences sur les clichĂ©s de diffraction Ă©lectronique et les diagrammes de diffraction des rayons-X ont Ă©tĂ©s expliquĂ©es permettant d’unifier les controverses prĂ©sentent Ă  ce sujet dans la littĂ©rature. D’autre part, l’étude de la stabilitĂ© thermique du composĂ© Li2MnO3 a mis en Ă©vidence l’apparition de dĂ©fauts de type « phase spinelle » en surface des grains lorsque la tempĂ©rature de traitement thermique devient supĂ©rieure ou Ă©gale Ă  900°C. Le traitement du matĂ©riau par la voie acide a pu ĂȘtre Ă©tudiĂ© et le mĂ©canisme de dĂ©sintercalation chimique du lithium par la voie acide a finalement pu ĂȘtre prĂ©cisĂ©. Il est montrĂ© que ce mĂ©canisme est le mĂȘme quelle que soit la taille des particules.In order to get a better understanding of the complex structural evolutions occurring in the layered oxides like Li1+x(Ni0.425Mn0.425Co0.15)O2 materials when they are used as positive electrodes in lithium batteries, the structure of Li2MnO3 has been studied in detail. Obtained from several synthesis ways, annealed at various temperatures, this compound that can be considered as a model one regarding these complex materials has been the object of a crystallographic study where the use of electron microscopy was privileged. Two kinds of defects could be identified. From one part, the existence of stacking faults in the Li2MnO3 material has been proved and they have been visualized for the first time. Their consequences on X ray and electron diffraction patterns are explained allowing the unification of discrepancies existing in the bibliography. For other part, the study of the thermal stability of Li2MnO3 evidenced the appearance of spinel type defects when the annealing treatment is performed above 900°C. Finally the delithiation by acid leaching is studied and the lithium extraction mechanism is clarified. It is shown that this mechanism is the same whatever the particle size is

    Contribution to the understanding of the structure of Li<sub>2</sub>MnO<sub>3</sub>, of its defects and of<br />derivative phases

    No full text
    Afin de mieux comprendre les Ă©volutions structurales mises en Ă©vidence dans les oxydes lamellaires de formule gĂ©nĂ©rale Li1+x(Ni0.425Mn0.425Co0.15)O2 utilisĂ©s comme Ă©lectrode positive pour batterie lithium-ion, la structure du composĂ© Li2MnO3 a Ă©tĂ© Ă©tudiĂ©e en dĂ©tail.Obtenu selon diffĂ©rentes voies de synthĂšses, rĂ©alisĂ©es Ă  diffĂ©rentes tempĂ©ratures, ce matĂ©riau qui peut ĂȘtre considĂ©rĂ© comme un matĂ©riau model Ă  fait l'objet d'une Ă©tude cristallographique oĂč l'utilisation de la microscopie Ă©lectronique a Ă©tĂ© privilĂ©giĂ©e. Deux types de dĂ©fauts ont Ă©tĂ© identifiĂ©s. D'une part, l'existence de fautes d'empilement au sein du matĂ©riau a Ă©tĂ© dĂ©montrĂ©e. Leurs consĂ©quences sur les clichĂ©s de diffraction Ă©lectronique et les diagrammes de diffraction des rayons-X ont Ă©tĂ©s expliquĂ©es permettant d'unifier les controverses prĂ©sentent Ă  ce sujet dans la littĂ©rature. D'autre part, l'Ă©tude de la stabilitĂ© thermique du composĂ© Li2MnO3 a mis en Ă©vidence l'apparition de dĂ©fauts de type « phase spinelle » en surface des grains lorsque la tempĂ©rature de traitement thermique devient supĂ©rieure ou Ă©gale Ă  900°C. Le traitement du matĂ©riau par la voie acide a pu ĂȘtre Ă©tudiĂ© et le mĂ©canisme de dĂ©sintercalation chimique du lithium par la voie acide a finalement pu ĂȘtre prĂ©cisĂ©. Il est montrĂ© que ce mĂ©canisme est le mĂȘme quelle que soit la taille des particules.In order to get a better understanding of the complex structural evolutions occurring in the layered oxides like Li1+x(Ni0.425Mn0.425Co0.15)O2 materials when they are used as positive electrodes in lithium batteries, the structure of Li2MnO3 has been studied in detail.Obtained from several synthesis ways, annealed at various temperatures, this compound that can be considered as a model one regarding these complex materials has been the object of a crystallographic study where the use of electron microscopy was privileged. Two kinds of defects could be identified. From one part, the existence of stacking faults in the Li2MnO3 material has been proved and they have been visualized for the first time. Their consequences on X ray and electron diffraction patterns are explained allowing the unification of discrepancies existing in the bibliography. For other part, the study of the thermal stability of Li2MnO3 evidenced the appearance of spinel type defects when the annealing treatment is performed above 900°C. Finally the delithiation by acid leaching is studied and the lithium extraction mechanism is clarified. It is shown that this mechanism is the same whatever the particle size is

    Revealing Electrochemically Induced Antisite Defects in LiCoPO<sub>4</sub>: Evolution upon Cycling

    No full text
    This article aims to reveal the formation of antisite defects that are induced in LiCoPO<sub>4</sub> crystals upon electrochemical charge/discharge cycles. This is achieved using Cs-corrected high-angle annular dark-field scanning transmission electron microscopy that allows their direct visualization. By comparison with simulated images, their evolution is discussed and their quantification performed. In a sample free of defects, a disordering caused by the exchange between lithium and cobalt atoms is progressively created. It is the first time that evidence of antisite defect creation in an olivine-type compound upon electrochemical cycling has been reported. Their formation is shown to occur during the charging process. While they are heterogeneously distributed after the first charge/discharge cycle because of their concentration, such exchange defects appear to be more homogeneously dispersed in the lattice when their amount is much larger after the 30th charge/discharge cycle. This article provides new insight into the behavior of this compound and contributes to an explanation for the reason why such a high-capacity fading is observed when this material is used in a battery
    • 

    corecore