10 research outputs found

    Neural Predictive Control of Unknown Chaotic Systems

    Get PDF
    In this work, a neural networks is developed for modelling and controlling a chaotic system based on measured input-output data pairs. In the chaos modelling phase, a neural network is trained on the unknown system. Then, a predictive control mechanism has been implemented with the neural networks to reach the close neighborhood of the chosen unstable fixed point embedded in the chaotic systems. Effectiveness of the proposed method for both modelling and prediction-based control on the chaotic logistic equation and Hénon map has been demonstrated

    Stabilizing Unstable Periodic Orbits of the Multi-Scroll Chua's Attractor

    Get PDF
    This paper addresses the control of the n-scroll Chua’s circuit. It will be shown how chaotic systems with multiple unstable periodic orbits (UPOs) detected in the Poincar´e section can be stabilized as well as taking the system dynamics from one UPO to another

    Advanced eLectrical Bus (ALBus) CubeSat: From Build to Flight

    Get PDF
    Advanced eLectrical Bus (ALBus) CubeSat is a technology demonstration mission of a 3-U CubeSat with an advanced digitally controlled electrical power system and novel use of Shape Memory Alloy (SMA) technology for reliable deployable solar array mechanisms. The primary objective was to advance the power management and distribution (PMAD) capabilities to enable future missions requiring more flexible and reliable power systems with higher output power capabilities. Goals included demonstration of 100W distribution to a target electrical load, response to continuous and fast transient power requirements, and exhibition of reliable deployment of solar arrays and antennas utilizing re-settable SMA mechanisms. The power distribution function of the ALBus PMAD system is unique in the total power to target load capability, as power is distributed from batteries to provide 100W of power directly to a resistive load. The deployable solar arrays utilize NASA’s Nickel-Titanium-Palladium-Platinum (NiTiPdPt) high-temperature SMAs for the retention and release mechanism, and a superelastic binary NiTi alloy for the hinge component. The project launched as part of the CubeSat Launch Initiative (CLI) Educational Launch of Nanosatellites (ELaNa) XIX mission on Rocket Lab’s Electron in December 2018. This paper summarizes the final launched design and the lessons learned from build to flight

    Enhancing face recognition using Directional Filter Banks

    No full text
    Face recognition is an increasingly important problem in biometric applications; consequently many recognition algorithms have been proposed during the last three decades. It is accepted that the use of a pre-processing step can extract more discriminating features and increase the classification rates. Although, Gabor filters have been widely employed they do not provide satisfying classification results. This paper proposes the use of directional filters as a pre-processing step to demonstrate that a Directional Filter Bank is capable of enhancing existing face recognition classifiers such as PCA, ICA, LDA and SDA. The proposed method is tested using two different databases: the Yale face database and the FERET database. Experimental results demonstrate that the pre-processing phase enhances the classification rates. A comparative study has also been carried out to demonstrate that a DFB based classification outperforms a Gabor type one.Scopu

    Contourlet-based active contour model for PET image segmentation

    No full text
    <p>Purpose: PET-guided radiation therapy treatment planning, clinical diagnosis, assessment of tumor growth, and therapy response rely on the accurate delineation of the tumor volume and quantification of tracer uptake. Most PET image segmentation techniques proposed thus far are suboptimal in the presence of heterogeneity of tracer uptake within the lesion. This work presents an active contour model approach based on the method of Chan and Vese ["Active contours without edges," IEEE Trans. Image Process. 10, 266-277 (2001)] designed to take into account the high level of statistical uncertainty (noise) and to handle the heterogeneity of tumor uptake typically present in PET images.</p><p>Methods: In the proposed method, the fitting terms in the Chan-Vese formulation are modified by introducing new input images, including the smoothed version of the original image using anisotropic diffusion filtering (ADF) and the contourlet transform of the image. The advantage of utilizing ADF for image smoothing is that it avoids blurring the object's edges and preserves the average activity within a region, which is important for accurate PET quantification. Moreover, incorporating the contourlet transform of the image into the fitting terms makes the energy functional more effective in directing the evolving curve toward the object boundaries due to the enhancement of the tumor-to-background ratio (TBR). The proper choice of the energy functional parameters has been formulated by making a clear consensus based on tumor heterogeneity and TBR levels. This cautious parameter selection leads to proper handling of heterogeneous lesions. The algorithm was evaluated using simulated phantom and clinical studies, where the ground truth and histology, respectively, were available for accurate quantitative analysis of the segmentation results. The proposed technique was also compared to a number of previously reported image segmentation techniques.</p><p>Results: The results were quantitatively analyzed using three evaluation metrics, including the spatial overlap index (SOI), the mean relative error (MRE), and the mean classification error (MCE). Although the performance of the proposed method was analogous to other methods for some datasets, overall the proposed algorithm outperforms all other techniques. In the largest clinical group comprising nine datasets, the proposed approach improved the SOI from 0.41 +/- 0.14 obtained using the best-performing algorithm to 0.54 +/- 0.12 and reduced the MRE from 54.23 +/- 103.29 to 0.19 +/- 16.63 and the MCE from 112.86 +/- 69.07 to 60.58 +/- 18.43.</p><p>Conclusions: The proposed segmentation technique is superior to other representative segmentation techniques in terms of highest overlap between the segmented volume and the ground truth/histology and minimum relative and classification errors. Therefore, the proposed active contour model can result in more accurate tumor volume delineation from PET images. (C) 2013 American Association of Physicists in Medicine.</p>

    Stable active running of a planar biped robot using Poincare map control

    No full text
    This work formulates the active limit cycles of bipedal running gaits for a compliant leg structure as the fixed point of an active Poincare map. Two types of proposed controllers stabilize the Poincare map around its active fixed point. The first one is a discrete linear state feedback controller designed with appropriate pole placement. The discrete-time control first uses purely constant torques during stance and flight phase, then discretizes each phase into smaller constant-torque intervals. The other controller is an invariant manifold based chaos controller: a generalized OGY controller having a linear form and a nonlinear form. Both controllers can stabilize active running gaits on either even or sloped terrains. The efficiency of these controllers for bipedal running applications are compared and discussed
    corecore