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Abstract. In this work, a neural networks is developed for modelling and
controlling a chaotic system based on measured input-output data pairs. In the
chaos modelling phase, a neural network is trained on the unknown system.
Then, a predictive control mechanism has been implemented with the neural
networks to reach the close neighborhood of the chosen unstable fixed point
embedded in the chaotic systems. Effectiveness of the proposed method for
both modelling and prediction-based control on the chaoticlogistic equation and
Hénon map has been demonstrated.
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1 Introduction

Due to the structural complexity of the chaotic systems and due to their ex-

treme sensitivity to initials conditions, the problem of controlling or ordering

such systems has received increasing attention in recent years. Specially, E. Ott,

C. Grebogi and J. Yorke [1] introduced a control method of chaotic systems known

as OGY method, according to which the unstable fixed point can be stabilized

by applying only small variations to a control parameter. Since that, significant

attention has been focused on developing techniques for the control of chaotic

systems [2–9].

In the efforts of identifying and controlling chaos, there are difficulties in

modelling chaotic systems represented only by the input-output data pairs pro-

vided by the underlying system. Moreover, there is no effective method to design
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controllers to ensure good tracking performance. Therefore, it is necessary to

develop an approach that solve such problems.

Recently, neural networks have found success as a promising way to solve

highly nonlinear control problem [10–13]. Application of neural networks for

chaos control have been successfully applied [14–17]. In [16], neural networks

have been used for controlling chaotic dynamical systems trained in the OGY

method and the Pyragas method. In these techniques, emphasis is placed on

control of a chaotic system to a desired target. Renet al. [17] proposed a dynamic

neural network control method for unknown continuous nonlinear systems. The

control structure includes a dynamic neural network identifier and a model-based

neural network controller.

In this paper, we are looking into the possibility of developing a simple

neural network model for both modelling and controlling discrete chaotic systems

given only by input-output data pairs. This is done by combining the neural

networks for modelling and the predictive controller is directly designed based on

the online network model for the control of the unknown chaotic system on one of

its unstable fixed point. Moreover, we give very simple necessary and sufficient

conditions for local stabilization of unstable fixed points by the proposed method.

The paper is organized as follows. In Section 2, we introduce the neuralnet-

works modelling incorporating with feed-forward backpropagation functions and

a Levenberg-Marquardt computational algorithm is used for calculation.Based on

this modelling approach, a neural predictive controller is developed and detailed

in Section 3. The chaotic logistic equation and the Hénon system are then used

as examples to illustrate the advantages and control performance of the proposed

approach in Section 4. Finally, conclusion is given in Section 5.

2 Neural network

For a neural networks with
(

x(i), y(i)
)

input output data pairs,i = 1, 2, . . . , n

number of iterations and one hidden layer ofj = 1, 2, . . . , m neurons.

For a such network, the input tojth units of the hidden layer denoted byIj is

the weighed sum of all the inputs added to the bias

Ij =
n

∑

i=1

wjix(i) + bji, (1)
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wherewji are the interconnection weights from thejth function and theith input

to the output and theb bias. The inputIj is then passed through an activation

function to produce an outputOj as shown in Fig. 1.

Fig. 1. Training of the neural network for modelling and controlling phases.

The activation function is represented with a functionF . The outputOj is

given by

Oj = F (Ij) = F
(

m
∑

j=1

wjix(i) + bj

)

, (2)

The network output is given by

y(i) = F
(

x(i)
)

=
m

∑

j=1

woϕj

(

x(i)
)

+ bo. (3)

There are many ways to define the activation function. One that is often used in

neural networks is thesigmoid functionwhich is used in this network

ϕj

(

x(i)
)

=
1

1 + exp
(

− bji − wjix(i)
) . (4)

The neural network has to be trained such that it can perform both modelling and

controlling tasks. Initially, the network weightswji and biasbji of the hidden

layer and the weightwo and biasbo of the output layer are assigned randomly.

The outputy(i) is calculated for each associated inputx(i). In order to minimize
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the error between the network outputy(i) and the output of the true systemys(i),

weights and bias are adjusted to minimize the error vectoremax given by

emax =
1

2

n
∑

i=1

e2

i =
1

2

n
∑

i=1

(

ys(i) − y(i)
)

2
. (5)

Note thatemax is a function ofwji, bji, wo andbo. We can use the Levenberg-

Marquardt method onemax to updatewji, bji, wo andbo. The amount of update

for each parameter is

αnew = αold − (JT
α .Jα + λ.I)−1JT

α ei, (6)

whereα is a vector whose elements are the different parameters of the neural

model,I is the identity matrix, the quantityλ > 0 is called themomentum term

which will help to keep the updates moving in the right direction andJα represents

Jacobian for each parameters defined by

Jwji
=

∂ϕ
(

x(i)
)

∂wji

, Jbji
=

∂ϕ
(

x(i)
)

∂bji

, Jwo
=

∂F
(

x(i)
)

∂wo

, Jbo
=

∂F
(

x(i)
)

∂bo

. (7)

The Levenberg-Marquardt algorithm could be run many reprises to try totrain

the neural network system to much data pairs very well. The algorithm runs until

all of the parameters stop moving or change very little over a series of update

steps. This indicates that the value of the error is minimized, so the algorithm has

found a minimum and it can be terminated. However, parameters are reinitialized

if the error is over the desired tolerance or if the maximum number of iteration is

reached.

3 Neural predictive controller design

In this section, the control objective is to suppress chaos, that is, to drive the

unknown chaotic system from a chaotic regime to a regular attractor such asfixed

points.

Fig. 2 shows the block diagram of the neural predictive control where the

plant under control is the unknown chaotic system,ys is the output of the true

system,y is the neural output,ei is the modelling error,yp is the predicted output

of the neural system andu is the control.
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Fig. 2. The block diagram.

Suppose that the neural model of the unknown chaotic system has an unstable

fixed pointȳ, it satisfy:

ȳ = F (x̄) (8)

and is currently in a chaotic state. The purpose of predictive control is to assure

the system asymptotically converges towardsȳwith only extremely small applied

force u. In order to avoid such behavior, we design a conventional feedback

controlleru(i) added to the dynamical system (3) of the form

y(i) = F
(

x(i)
)

+ u(i), (9)

u(i) ∈ <n is determined by the difference between the predicted states and the

current states. It is chosen in such a way to make the trajectory of the uncontrolled

system converge to an unstable fixed pointȳ.

u(i) = K
(

yp(i) − y(i)
)

, (10)

whereK is an adjustable coefficient of the controller,yp(i) is the predicted future

state of uncontrolled chaotic systems from the current statey(i).

Based on the neural model established above, neural prediction of a future

stateyp of uncontrolled unknown chaotic system is determined by

yp(i) = y(i + p) = F
(

x(i + p)
)

. (11)
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Using a one step ahead-prediction, the controlled unknown chaotic systemis then

given by:

y(i) = F
(

x(i)
)

+ K
(

F
(

x(i + 1)
)

− F
(

x(i)
))

. (12)

The simplest way to formulate an applicable control law is to make use of the

fact that the dynamics of any smooth nonlinear system is approximately linear

in a small neighborhood of a fixed point. Thus, nearȳ, we can use the linear

approximation for the uncontrolled system by

δy(i) = AδF
(

x(i)
)

, (13)

where

δy(i) = y(i) − ȳ and δF
(

x(i)
)

= F
(

x(i)
)

− x̄ (14)

andA is the derivatives evaluated at the fixed pointȳ = F (x̄).

The controlled system is linearized aroundȳ by

δy(i) = AδF
(

x(i)
)

+ δu(i)

= AδF
(

x(i)
)

+ K
(

δy(i + 1) − δy(i)
)

= AδF
(

x(i)
)

+ K
(

δF
(

x(i + 1)
)

− δF
(

x(i)
))

= AδF
(

x(i)
)

+ K
(

AδF
(

x(i)
)

− δF
(

x(i)
))

=
(

A + K(A − 1)
)

δF
(

x(i)
)

.

(15)

The control problem is to designu(i) to control the system statey to track the un-

stable fixed point̄y. GainK is computed such that equation (15) is exponentially

stable. This implies that the controller gain must satisfy the following inequality:

∣

∣A + K(A − 1)
∣

∣ < 1. (16)

Furthermore, determining unstable fixed points experimentally needs that at least

one input-output data pair traveled on, which is not necessary satisfied,in this

case, we assume that if

∣

∣y(i) − y(i − 1)
∣

∣ < ε (17)
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for ε a small positive number. Then the neural model is in the vicinity of the fixed

points.

Since there is no mathematical model of the chaotic system, values ofA can

be determined by simulation in the vicinity of the unstable fixed point by

A =
y(i + 1) − y(i)

y(i) − y(i − 1)
. (18)

Similar to the OGY method [1], in order to apply the proposed predictive control

strategy, we have to determine the correction to apply in the vicinity of the fixed

point to adjust the next point so it falls on the fixed one. Stability is guaranteed

in a neighborhood of the stabilized fixed point, and the controlled neural system

become as follow

y(i) =

{

F
(

x(i)
)

+ u(i), if
∣

∣y(i) − y(i − 1)
∣

∣ < ε,

F
(

x(i)
)

, otherwise.
(19)

All things considered, we are now able to apply the proposed approach and test

its efficiency for both modelling and controlling unknown chaotic systems which

will be the objective of the next section.

4 Simulation study

4.1 Example: logistic equation

In this example, the logistic mapping is defined by a quadratic function of the

form

ys(i) = pys(i − 1)
(

1 − ys(i − 1)
)

. (20)

Whenp = 3.75, the system is chaotic without control.

The system can be rewritten by:

x(i) = ys(i − 1),

ys(i) = px(i)
(

1 − x(i)
)

,
(21)

where
(

x(i), ys(i)
)

are the measured input and output of the unknown chaotic

systems.
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We first randomly generated 1000 data pairs using the true system, and then

used them to train the neural model.The neural network is characterized byone

inputsx, a hidden layer of 10 neurons(m = 10) and one outputy. Levenberg-

Marquardt algorithm is used for best search of new parameterswji and the bias

bji of the hidden layer, the weightwo andbo of the output layer.

The plot of input output data pairs generated from the unknown chaotic sys-

tem, the resulting neural model compared to the plot of the true system and the

modelling error are shown in Figs. 3(a), (b). The output data is plotted with “+”

marker and the corresponding neural model outputs is plotted with solid line.

They are indistinguishable.
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Fig. 3. Measured output data and neural model (a); modellingerror (b).

Once the neural model of the unknown logistic equation is established and

in order to apply the proposed neural predictive control strategy, we have to

determine the correction to be applied in the vicinity of the fixed point to adjust

the next point so it falls on the fixed one. We have to computeA and gainK.

We start simulation withy(0) = 0.7 as initial condition. At timei = 216, the

test is verified and we gety(216) = 0.7294.

From equation (18), value ofA is obtained from simulation as follow:

A =
y(i + 1) − y(i)

y(i) − y(i − 1)
=

0.7401 − 0.7294

0.7294 − 0.7356
= −1.7258. (22)

The controlled system around its fixed point is given by

δy(i) = (−1.7258 − 2.7258K)δF
(

x(i)
)

. (23)
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The fixed point is stabilized by the proposed method of control if

|−1.7258 − 2.7258K| < 1. (24)

Thus, the feedback gainK is in the range of:

−1 < K < −0.2663 (25)

we chooseK = −0.65.

In the validation phase of the identified neural model, once inequality (17)

satisfied, control inputu switch on and tracks the trajectory towards the unstable

fixed point. Simulation results in Figs. 4(a), (b) show that control of the neural

system at the fixed point works very well.
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Fig. 4. Neural model under predictive control (a); control input (b).

At i = 217, appropriate states is close to the unstable fixed point, the control

input takes a nonzero value and stabilize trajectory on unstable fixed point.

4.2 Example: Hénon system

Simulation on some higher-dimensional systems have been also carried out. Ex-

perience shows that, just like many other methods, the higher the dimension is,

the longer the simulation time will be. However, in terms of quality of control

performance, they are the same. We show a two-dimensional example. The

Hénon system is a nonlinear system with chaotic behavior for certain valuesof
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parameters, which is represented by the relation:

ys(i) = a − ys(i − 1)2 + bys(i − 2). (26)

Fora = 1.4 andb = 0.3, system exhibit a chaotic regime. It can be rewritten by:

x1(i) = ys(i − 1),

x2(i) = ys(i − 2),

ys(i) = a − x1(i)
2 + bx2(i).

(27)

In order to control the unknown chaotic system given only by input-output data

pairs, the system is first modelized using the neural network. In the modelling

phase, neural network is characterized by two inputsx1 andx2, a hidden layers

of 30 neurons (m = 30) and one outputy.
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Fig. 5. Measured output data and neural model (a); modellingerror (b); neural
model under predictive control (c); control input (d).
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We start simulation withx(0) = 0.01 andx(1) = 0.02 as initial condition.

At time i = 80, y(80) = 0.8856. A is obtained from simulation as follow

A =
y(i + 1) − y(i)

y(i) − y(i − 1)
=

0.8800 − 0.8856

0.8856 − 0.8813
= −1.3023. (28)

The controlled system around its fixed point is given by

δy(i) = (−1.3023 − 2.3023K)δF
(

x(i)
)

. (29)

The fixed point is stabilized by the proposed method of control if

| − 1.3023 − 2.3023K| < 1. (30)

This yield to −1 < K < −0.1313 we chooseK = −0.8.

The simulation results of neural modelling and neural controlling phases of

the unknown chaotic Hénon system are summarized altogether in Fig. 5.

5 Conclusion

In this paper, a neural predictive control method has been completely designed,

analyzed and successfully applied to the control of unknown discrete chaotic

systems, where the neural model is established using only the input-output data

pairs of the underlying system. Based on this neural model, the proposed control

law ensures that the chaotic state tracks stable constant targets, which fallson

fixed points. The performance of the proposed control was demonstrated using

logistic equation and Hénon system. We conclude that the suggested schemes

can effectively solve the control problems of unknown chaotic systems based on

neural models.
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