41 research outputs found

    A DNA-Modified Live Vaccine Prime-Boost Strategy Broadens the T-Cell Response and Enhances the Antibody Response against the Porcine Reproductive and Respiratory Syndrome Virus.

    Get PDF
    The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) induces reproductive disorders in sows and respiratory illnesses in growing pigs and is considered as one of the main pathogenic agents responsible for economic losses in the porcine industry worldwide. Modified live PRRSV vaccines (MLVs) are very effective vaccine types against homologous strains but they present only partial protection against heterologous viral variants. With the goal to induce broad and cross-protective immunity, we generated DNA vaccines encoding B and T antigens derived from a European subtype 1 strain that include T-cell epitope sequences known to be conserved across strains. These antigens were expressed either in a native form or in the form of vaccibodies targeted to the endocytic receptor XCR1 and CD11c expressed by different types of antigen-presenting cells (APCs). When delivered in skin with cationic nanoparticles and surface electroporation, multiple DNA vaccinations as a stand-alone regimen induced substantial antibody and T-cell responses, which were not promoted by targeting antigens to APCs. Interestingly, a DNA-MLV prime-boost strategy strongly enhanced the antibody response and broadened the T-cell responses over the one induced by MLV or DNA-only. The anti-nucleoprotein antibody response induced by the DNA-MLV prime-boost was clearly promoted by targeting the antigen to CD11c and XCR1, indicating a benefit of APC-targeting on the B-cell response. In conclusion, a DNA-MLV prime-boost strategy, by enhancing the potency and breadth of MLV vaccines, stands as a promising vaccine strategy to improve the control of PRRSV in infected herds

    Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource

    Full text link

    Cathepsin D released by lactating rat mammary epithelial cells is involved in prolactin cleavage under physiological conditions

    No full text
    The 16 kDa prolactin fragment arises from partial proteolysis of the native 23 kDa prolactin pituitary hormone. The mammary gland has been involved in this processing, although it has not been clarified whether it occurs in stroma or epithelial cells or extracellularly. Also, the processing enzyme has not been defined yet. Here we show that the incubation medium of stroma-deprived mammary acini from lactating rat contains an enzymatic activity able to cleave, in a temperature- and time-dependent fashion, the 23 kDa prolactin to generate a 16 kDa prolactin detectable under reducing conditions. This cleavage was not impaired in the presence of hirudin, a thrombin inhibitor, but strongly weakened in the presence of pepstatin A, a cathepsin D inhibitor. Cathepsin D immuno-depletion abolished the capability of acini-conditioned medium to cleave the 23 kDa prolactin. Brefeldin A treatment of acini, a condition that largely abolished the apical secretion of milk proteins, did not impair the secretion of the enzymatically active single chain of cathepsin D. These results show that mature cathepsin D from endosomes or lysosomes is released, likely at the baso-lateral site of mammary epithelial cells, and that a cathepsin D-dependent activity is required to effect, under physiological conditions, the cleavage of 23 kDa prolactin in the extracellular medium. This is the first report demonstrating that cathepsin D can perform a limited proteolysis of a substrate at physiological pH outside the cell

    When nitrate and phosphate sensors meet

    No full text

    The Arabidopsis NRT1.1 transceptor coordinately controls auxin biosynthesis and transport to regulate root branching in response to nitrate

    No full text
    In agricultural systems, nitrate is the main source of nitrogen available for plants. Besides its role as a nutrient, nitrate has been shown to act as a signal molecule for plant growth, development and stress responses. In Arabidopsis, the NRT1.1 nitrate transceptor represses lateral root (LR) development at low nitrate availability by promoting auxin basipetal transport out of the LR primordia (LRPs). In addition, our present study shows that NRT1.1 acts as a negative regulator of the TAR2 auxin biosynthetic gene expression in the root stele. This is expected to repress local auxin biosynthesis and thus to reduce acropetal auxin supply to the LRPs. Moreover, NRT1.1 also negatively affects expression of the LAX3 auxin influx carrier, thus preventing cell wall remodeling required for overlying tissues separation during LRP emergence. Both NRT1.1-mediated repression of TAR2 and LAX3 are suppressed at high nitrate availability, resulting in the nitrate induction of TAR2 and LAX3 expression that is required for optimal stimulation of LR development by nitrate. Altogether, our results indicate that the NRT1.1 transceptor coordinately controls several crucial auxin-associated processes required for LRP development, and as a consequence that NRT1.1 plays a much more integrated role than previously anticipated in regulating the nitrate response of root system architecture

    Nitrate signalling: Functions of a nitrate transceptor

    No full text

    Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1

    No full text
    International audienceIn Arabidopsis the plasma membrane nitrate transceptor (transporter/receptor) NRT1.1 governs many physiological and developmental responses to nitrate. Alongside facilitating nitrate uptake, NRT1.1 regulates the expression levels of many nitrate assimilation pathway genes, modulates root system architecture, relieves seed dormancy and protects plants from ammonium toxicity. Here, we assess the functional and phenotypic consequences of point mutations in two key residues of NRT1.1 (P492 and T101). We show that the point mutations differentially affect several of the NRT1.1-dependent responses to nitrate, namely the repression of lateral root development at low nitrate concentrations, and the short-term upregulation of the nitrate-uptake gene NRT2.1, and its longer-term downregulation, at high nitrate concentrations. We also show that these mutations have differential effects on genome-wide gene expression. Our findings indicate that NRT1.1 activates four separate signalling mechanisms, which have independent structural bases in the protein. In particular, we present evidence to suggest that the phosphorylated and non-phosphorylated forms of NRT1.1 at T101 have distinct signalling functions, and that the nitrate-dependent regulation of root development depends on the phosphorylated form. Our findings add to the evidence that NRT1.1 is able to trigger independent signalling pathways in Arabidopsis in response to different environmental conditions

    The respiratory DC/macrophage network at steady-state and upon influenza infection in the swine biomedical model

    No full text
    International audienceHuman and mouse respiratory tracts show anatomical and physiological differences, which will benefit from alternative experimental models for studying many respiratory diseases. Pig has been recognized as a valuable biomedical model, in particular for lung transplantation or pathologies such as cystic fibrosis and influenza infection. However, there is a lack of knowledge about the porcine respiratory immune system. Here we segregated and studied six populations of pig lung dendritic cells (DCs)/macrophages (Mhs) as follows: conventional DCs (cDC) 1 and cDC2, inflammatory monocytederived DCs (moDCs), monocyte-derived Mhs, and interstitial and alveolar Mhs. The three DC subsets present migratory and naive T-cell stimulation capacities. As observed in human and mice, porcine cDC1 and cDC2 were able to induce T-helper (Th)1 and Th2 responses, respectively. Interestingly, porcine moDCs increased in the lung upon influenza infection, as observed in the mouse model. Pig cDC2 shared some characteristics observed in human but not in mice, such as the expression of FCeRIa and Langerin, and an intra-epithelial localization. This work, by unraveling the extended similarities of the porcine and human lung DC/Mh networks, highlights the relevance of pig, both as an exploratory model of DC/Mh functions and as a model for human inflammatory lung pathologies
    corecore