7,831 research outputs found
Gain properties of dye-doped polymer thin films
Hybrid pumping appears as a promising compromise in order to reach the much
coveted goal of an electrically pumped organic laser. In such configuration the
organic material is optically pumped by an electrically pumped inorganic device
on chip. This engineering solution requires therefore an optimization of the
organic gain medium under optical pumping. Here, we report a detailed study of
the gain features of dye-doped polymer thin films. In particular we introduce
the gain efficiency , in order to facilitate comparison between different
materials and experimental conditions. The gain efficiency was measured with
various setups (pump-probe amplification, variable stripe length method, laser
thresholds) in order to study several factors which modify the actual gain of a
layer, namely the confinement factor, the pump polarization, the molecular
anisotropy, and the re-absorption. For instance, for a 600 nm thick 5 wt\% DCM
doped PMMA layer, the different experimental approaches give a consistent value
80 cm.MW. On the contrary, the usual model predicting the gain
from the characteristics of the material leads to an overestimation by two
orders of magnitude, which raises a serious problem in the design of actual
devices. In this context, we demonstrate the feasibility to infer the gain
efficiency from the laser threshold of well-calibrated devices. Besides,
temporal measurements at the picosecond scale were carried out to support the
analysis.Comment: 15 pages, 17 figure
Race Dialogues in Teacher Preparation: Beginning the Conversation
This article describes a multicultural instructional activity used within a Master's of Teaching program in the Northwest to engage pre service teachers in critical self-reflection concerning their undestanding of the historical construction of race in the United States of America. The goal of the instructional project was for participants to become aware of their racial dispositions and biases, and consider how teachers' perspectives influence theaching and learning. The instructors-researchesr used theree films within the series, Rce: The Power of an Illusion, as curriculum to engage pre service teachers in critical self-reflection concerning the issues of race. The article describes the teaching strategy, narrative data collection, and critical narrative analysis. Using Critical Race Theory (CRT), the authors provide a critical narrative analysis of the pre service teachers' reflections on viewing the films
Development of magnetostrictive active members for control of space structures
The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed
Properties of Healthcare Teaming Networks as a Function of Network Construction Algorithms
Network models of healthcare systems can be used to examine how providers
collaborate, communicate, refer patients to each other. Most healthcare service
network models have been constructed from patient claims data, using billing
claims to link patients with providers. The data sets can be quite large,
making standard methods for network construction computationally challenging
and thus requiring the use of alternate construction algorithms. While these
alternate methods have seen increasing use in generating healthcare networks,
there is little to no literature comparing the differences in the structural
properties of the generated networks. To address this issue, we compared the
properties of healthcare networks constructed using different algorithms and
the 2013 Medicare Part B outpatient claims data. Three different algorithms
were compared: binning, sliding frame, and trace-route. Unipartite networks
linking either providers or healthcare organizations by shared patients were
built using each method. We found that each algorithm produced networks with
substantially different topological properties. Provider networks adhered to a
power law, and organization networks to a power law with exponential cutoff.
Censoring networks to exclude edges with less than 11 shared patients, a common
de-identification practice for healthcare network data, markedly reduced edge
numbers and greatly altered measures of vertex prominence such as the
betweenness centrality. We identified patterns in the distance patients travel
between network providers, and most strikingly between providers in the
Northeast United States and Florida. We conclude that the choice of network
construction algorithm is critical for healthcare network analysis, and discuss
the implications for selecting the algorithm best suited to the type of
analysis to be performed.Comment: With links to comprehensive, high resolution figures and networks via
figshare.co
Unraveling the Determinants of Protrusion Formation
A computerized morphometric classification technique based on latent factors reveals major protrusion classes: factors 4, 5, and 7. Previous work showed that factor 4 represented filopodia, 5 the distribution of lamellar cytoplasm, and 7 a blunt protrusion. We explore the relationship of focal contact (FC) characteristics and their integrated actin cables to factors values. The results show that FC maturation/cytoskeletal integration affects factor 5, because FC elongation/integration was correlated with its values. On the contrary, 7 values decreased with maturation, so cable or FC size or their integration must be restricted to form these protrusions. Where integration did occur, the cables showed distinctive size and orientation, as indicated by correlation of 7 values with FC shape. Results obtained with myosin inhibitors support the interpretation that a central, isometric, contractile network puts constraints on both factor 5 and 7 protrusions. We conclude that cells establish functional domains by rearranging the cytoskeleton
The relative timing of trunk muscle activation is retained in response to unanticipated postural-perturbations during acute low back pain
The purpose of this study was to assess the activation of the erector spinae (ES) and external oblique (EO) in response to unanticipated, bi-directional postural perturbations before and after the induction of acute low back pain (LBP) in healthy individuals. An experimental session consisted of a baseline, control, and an acute LBP condition. For the control and acute LBP condition, isotonic or hypertonic saline (HS), respectively, was injected into the right ES muscle. In each condition, participants stood on a moveable platform during which 32 randomized postural perturbations (8 repetitions of 4 perturbation types: 8 cm anterior slides, 8 cm posterior slides, 10° anterior tilts, and 10° posterior tilts) with varying inter-perturbation time intervals were performed over a period of 4–5 min. Bilateral surface electromyography (EMG) was recorded from the ES and EO in addition to subjective pain records. During the acute LBP condition: (1) the onset time of the ES and EO was delayed for the forward and backward sliding perturbations (P < 0.05); (2) EMG amplitude was reduced bilaterally for all perturbations (P < 0.05); (3) the order of activation and interval between the onset times of the ES and EO were unaltered and (4) ES, but not EO, activity was adjusted to account for the directional differences between the perturbations. This study revealed that re-establishment of posture and balance was a result of the individuals’ ability to rapidly modulate ES with respect to EO activity and that the bi-directional postural responses, although shifted in time and amplitude, retained temporal features in the presence of acute LBP
Fast shower simulation in the ATLAS calorimeter
The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime.
In the fast shower parameterisation technique, a parameterisation is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to ~1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper
- …