8 research outputs found

    Sémantique compositionnelle et raffinement de systèmes temporisés : application aux automates temporisés d'UPPAAL et au langage FIACRE

    Get PDF
    Les systèmes temps-réel sont massivement impliqués dans de nombreuses applications, dont notre vie dépend comme les logiciels embarqués dans les voitures et les avions. Pour ces systèmes des erreurs inattendues ne sont pas acceptables. De ce fait, assurer la correction de ces systèmes est une tâche primordiale. Les systèmes temps-réel représentent un large spectre de systèmes automatisés dont la correction dépend de la ponctualité des événements (timeliness) et pas seulement de leurs propriétés fonctionnelles. Chaque événement doit être produit selon la date indiquée par la spécification du système. Les systèmes temps-réel sont concurrents et embarqués, et conçus comme un assemblage de composants en interaction. Malgré les progrès réalisés dans les techniques de model checking, la vérification et l'analyse des systèmes temps-réel représentent toujours un défi autant pour les chercheurs que les praticiens. Pour étudier le comportement des systèmes temps-réel, différents formalismes ont été considérés comme les automates temporisés, les réseaux de Petri temporisés et les algèbres de processus. Cela donne lieu à plusieurs points délicats concernant le raffinement, la composition et la vérification. Ces points représentent un champ de recherche intensif. Ma thèse présente une étude des systèmes temps-réel focalisée sur les notions de sémantique, de composition et de raffinement. Elle décrit nos efforts pour explorer et étendre les formalismes temps-réel. Nous avons abordé les concepts de base de la modélisation des systèmes temps réel tels que les variables partagées, la communication, les priorités, la dynamicité, etc. La contribution de cette thèse porte sur la définition d’un cadre formel pour raisonner sur la sémantique, la composition et le raffinement des systèmes temporisés. Nous avons instancié ce cadre pour le formalisme des automates temporisés et le langage Fiacre.Nowadays, real-time systems are intensively involved in many applications on which our life is dependent, like embedded software in cars and planes. For these systems unexpected errors are not acceptable. Real-time systems represent a large spectrum of automated systems of which correctness depends on the timing of events (timeliness) and not only on their functional properties. Each event must be produced on time. Realtime systems can be concurrent and embedded where different interactive modules and components are assembled together. Despite advances in model checking techniques, the verification and analysis of real-time systems still represent a strong challenge for researchers and practitioners. To study the behavior of real-time systems, different formalisms have been considered like timed automata, time Petri nets and timed algebra, and several challenges concerning refinement, composition and verification have emerged. These points represent an intensive field of research. This thesis describes our effort to explore and extend real-time formalisms. We have revisited real-time language semantics, focusing on composition and refinement. We have addressed high level concepts like shared variables, communication, priorities, dynamicity, etc. The main contribution consists of a theoretical study of timed systems where we establish a framework for reasoning on composition, refinement and semantics. We instantiate this framework for timed automata and the Fiacre language

    Optimizing the Resource Requirements of Hierarchical Scheduling Systems

    Get PDF
    Compositional reasoning on hierarchical scheduling systems is a well-founded formal method that can construct schedulable and optimal system configurations in a compositional way. However, a compositional framework formulates the resource requirement of a component, called an interface, by assuming that a resource is always supplied by the parent components in the most pessimistic way. For this reason, the component interface demands more resources than the amount of resources that are really sufficient to satisfy sub-components. We provide two new supply bound functions which provides tighter bounds on the resource requirements of individual components. The tighter bounds are calculated by using more information about the scheduling system. We evaluate our new tighter bounds by using a model-based schedulability framework for hierarchical scheduling systems realized as Uppaal models. The timed models are checked using model checking tools Uppaal and Uppaal SMC, and we compare our results with the state of the art tool CARTS

    Connectivity-optimal Shortest Paths Using Crowdsourced Data

    No full text
    With the increasing dependency of ubiquitous connectivity for applications ranging from multimedia entertainment to intelligent transportation systems, having good signal coverage becomes vital. Therefore, route planners and navigation systems should take into account not only the physical distance, but also the characteristics and availability of the cellular network on the potential routes. In this paper we present a route planning tool that finds the connectivity-aware shortest paths based on crowdsourced data from OpenStreetMap and OpenSignal. The tool calculates optimal paths and allows physical distance tobe traded against signal quality. The evaluation shows that a 15% increase of the physical path length can achieve an 8.7dBm improvement of worst-case signal strength

    Schedulability and Energy Efficiency for Multi-core Hierarchical Scheduling Systems

    No full text
    International audienceWe propose a compositional framework for modeling and analyzing the schedulability and energy efficiency of embedded hierarchical scheduling systems running on a multi- core platform. The framework is realized using Parameterized Stopwatch Automata describing the concrete task behavior. The schedulability can be verified in a compositional way using U P - PAAL , and the energy profile can be generated using the statistical model checking algorithms of U PPAAL SMC. To our knowledge, our paper is the first one considering hierarchical scheduling, multi-core platforms and energy consumption simultaneously. Finally, the framework is applied to an avionics case study
    corecore