12 research outputs found

    Caractérisation et régulation du métabolisme des acides gras dans l’hypothalamus

    Get PDF
    Un déséquilibre de la balance énergétique constitue la principale cause du développement des pathologies métaboliques telles que l’obésité et le diabète de type 2. Au sein du cerveau, l’hypothalamus joue un rôle primordial dans le contrôle de la prise alimentaire et du métabolisme périphérique via le système nerveux autonome. Ce contrôle, repose sur l’existence de différentes populations neuronales au sein de l’hypothalamus médio-basal (MBH), neurones à neuropeptide Y (NPY)/Agouti-related peptide (AgRP), et neurones a proopiomelanocortine (POMC), dont l’activité est directement modulée par les variations des taux circulants des nutriments tels que le glucose et les acides gras (FA). Alors que les mécanismes de détection et le métabolisme intracellulaire du glucose ont été largement étudiés, l’implication du métabolisme intracellulaire des FA dans leurs effets centraux, est très peu comprise. De plus, on ignore si le glucose, module le métabolisme intracellulaire des acides gras à longue chaine (LCFA) dans le MBH. Le but de notre première étude est, de déterminer l'impact du glucose sur le métabolisme des LCFA, le rôle de l’AMP-activated protein kinase (AMPK), kinase détectrice du statut énergétique cellulaire, et d'établir s’il y a des changements dans le métabolisme des LCFA en fonction de leur structure, du type cellulaire et de la région cérébrale. Nos résultats montrent que le glucose inhibe l'oxydation du palmitate via l’AMPK dans les neurones et les astrocytes primaires hypothalamiques, in vitro, ainsi que dans les explants du MBH, ex vivo, mais pas dans les astrocytes et les explants corticaux. De plus, le glucose augmente l'estérification du palmitate et non de l’oléate dans les neurones et les explants du MBH, mais pas dans les astrocytes hypothalamiques. Ces résultats décrivent le devenir métabolique de différents LCFA dans le MBH, ainsi que, la régulation AMPK - dépendante de leur métabolisme par le glucose dans les astrocytes et les neurones, et démontrent pour la première fois que le métabolisme du glucose et des LCFA est couplé spécifiquement dans les noyaux du MBH, dont le rôle est critique pour le contrôle de l'équilibre énergétique. Le deuxième volet de cette thèse s’est intéressé à déterminer les mécanismes intracellulaires impliqués dans le rôle de la protéine de liaison ACBP dans le métabolisme central des FA. Nous avons démontré que le métabolisme de l’oléate et non celui du palmitate est dépendant de la protéine ACBP, dans les astrocytes hypothalamiques ainsi que dans les explants du MBH. Ainsi, nos résultats démontrent qu’ACBP, protéine identifiée originellement au niveau central, comme un modulateur allostérique des récepteurs GABA, agit comme un régulateur du métabolisme intracellulaire des FA. Ces résultats ouvrent de nouvelles pistes de recherche liées à la régulation du métabolisme des acides gras au niveau central, ainsi que, la nouvelle fonction de la protéine ACBP dans la régulation du métabolisme des FA au niveau du système nerveux central. Ceci aiderait à identifier des cibles moléculaires pouvant contribuer au développement de nouvelles approches thérapeutiques de pathologies telles que l’obésité et le diabète de type 2.An imbalance of energy balance is the main cause of the development of metabolic diseases such as obesity and type 2 diabetes. Within the brain, the hypothalamus plays an important role in the control of food intake and peripheral metabolism, via the autonomic nervous system. This control relies on the existence of different neuronal populations in the medio-basal hypothalamus (MBH), including neuropeptide Y (NPY), agouti-related peptide (AgRP) and proopiomelanocortin (POMC) neurons, the activity of which, is directly modulated by changes in the circulating levels of nutrients such as glucose and fatty acids (FA). While mechanisms governing the detection and the intracellular metabolism of glucose have been extensively studied, the involvement of FA intracellular metabolism, in their central effects is poorly understood. It is currently unknown if glucose regulates long chain fatty acids (LCFA) metabolism in the MBH. The aim of our first study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), a sensor of cellular energy status, and to establish if changes in LCFA metabolism, and its regulation by glucose, vary as a function of LCFA type, cell type and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures and MBH slices, ex vivo, but not in cortical astrocytes and slice preparations. In addition, our results show that glucose increases palmitate but not oleate esterification into neutral lipids, in neurons and MBH slices, but not in hypothalamic astrocytes. These findings reveal the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons and established for the first time the metabolic coupling of glucose and LCFA as a specific feature of the MBH, whose role is critical for the control of energy balance. During the second part of this thesis, we were interested to determine the intracellular mechanisms involved in the role of Acyl-CoA binding protein (ACBP), in the central metabolism of FA. We have shown that the metabolism of oleate but not palmitate is ACBP -dependent in hypothalamic astrocytes and MBH slices. Thus, our results demonstrate That ACBP, a protein originally identified as an allosteric modulator of GABA receptor peptide, acts as a regulator of intracellular metabolism of FA. These results open a new avenues of research related to the central regulation of fatty acid metabolism and the new function of ACBP protein in the regulation of FA metabolism in the central nervous system, which could help to identify molecular targets that may contribute to the development of new therapeutic approaches of diseases such as obesity and type 2 diabetes

    Association between “cluster of differentiation 36 (CD36)” and adipose tissue lipolysis during exercise training: a systematic review

    Get PDF
    Fatty acid translocase (FAT/CD36) is a transmembrane glycoprotein belonging to the scavenger class B receptor family and is encoded by the cluster of differentiation 36 (CD36) gene. This receptor has a high affinity for fatty acids and is involved in lipid metabolism. An abundance of FAT/CD36 during exercise occurs in mitochondria and solitary muscles. As such, we aimed to systematically review the evidence for the relationship FAT/CD36 and adipose tissue lipolysis during exercise training. Five electronic databases were selected for literature searches until June 2022: PubMed, Web of Science, Scopus, science direct, and Google Scholar. We combined the different synonyms and used the operators (“AND”, “OR”, “NOT”): (CD36 gene) OR (CD36 polymorphism) OR (cluster of differentiation 36) OR (FAT/CD36) OR (fatty acid translocase) OR (platelet glycoprotein IV) OR (platelet glycoprotein IIIb) AND (adipose tissue lipolysis) OR (fatty acids) OR (metabolism lipid) OR (adipocytes) AND (physical effort) OR (endurance exercise) OR (high-intensity training). All published cross-sectional, cohort, case-control, and randomized clinical trials investigating CD36 polymorphisms and adipose tissue lipolysis during exercise in subjects (elite and sub-elite athletes, non-athletes, sedentary individuals and diabetics), and using valid methods to measure FAT/CD36 expression and other biomarkers, were considered for inclusion in this review. We initially identified 476 publications according to the inclusion and exclusion criteria, and included 21 studies investigating FAT/CD36 and adipose tissue lipolysis during exercise in our systematic review after examination of titles, abstracts, full texts, and quality assessments using the PEDro scale. There were nine studies with male-only participants, three with female-only participants, and nine studies included both female and male participants. There were 859 participants in the 21 selected studies. Studies were classified as either low quality (n = 3), medium quality (n = 13), and high quality (n = 5). In general, the data suggests an association between FAT/CD36 and adipose tissue lipolysis during exercise training. Improvements in FAT/CD36 were reported during or after exercise in 6 studies, while there were no changes reported in FAT/CD36 in 4 studies. An association between fat oxidation and FAT/CD36 expression during exercise was reported in 7 studies. No agreement was reached in 5 studies on FAT/CD36 content after dietary changes and physical interventions. One study reported that FAT/CD36 protein expression in muscle was higher in women than in men, another reported that training decreased FAT/CD36 protein in insulin-resistant participants, while another study reported no differences in FAT/CD36 in young, trained individuals with type 2 diabetes. Our analysis shows an association between FAT/CD36 expression and exercise. Furthermore, an association between whole-body peak fat oxidation and FAT/CD36 expression during exercise training was demonstrated.Systematic Review Registration: [PROSPERO], identifier [CRD42022342455

    Genotypic and Allelic Distribution of the CD36 rs1761667 Polymorphism in High-Level Moroccan Athletes: A Pilot Study

    Get PDF
    Previous studies have shown that variations in the CD36 gene may affect phenotypes associated with fat metabolism as the CD36 protein facilitates the transport of fatty acids to the mitochondria for oxidation. However, no previous study has tested whether variations in the CD36 gene are associated with sports performance. We investigated the genotypic and allelic distribution of the single-nucleotide polymorphism (SNP) rs1761667 in the CD36 gene in elite Moroccan athletes (cyclists and hockey players) in comparison with healthy non-athletes of the same ethnic origin. Forty-three Moroccan elite male athletes (nineteen cyclists and twenty-four field hockey players) belonging to the national teams of their respective sports (athlete group) were compared to twenty-eight healthy, active, male university students (control group). Genotyping of the CD36 rs1761667 (G>A) SNP was performed via polymerase chain reaction (PCR) and Sanger sequencing. A chi-square (χ2) test was used to assess the Hardy–Weinberg equilibrium (HWE) and to compare allele and genotype frequencies in the “athlete” and “control” groups. The genotypic distribution of the CD36 rs1761667 polymorphism was similar in elite athletes (AA: 23.81, AG: 59.52, and GG: 16.67%) and controls (AA: 19.23, AG: 69.23, and GG: 11.54%; χ2 = 0.67, p = 0.71). However, the genotypic distribution of the CD36 rs1761667 polymorphism was different between cyclists (AA: 0.00, AG: 72.22, and GG: 27.78%) and hockey players (AA: 41.67, AG: 50.00, and GG: 8.33%; χ2 = 10.69, p = 0.004). Specifically, the frequency of the AA genotype was significantly lower in cyclists than in hockey players (p = 0.02). In terms of allele frequency, a significant difference was found between cyclists versus field hockey players (χ2 = 7.72, p = 0.005). Additionally, there was a predominance of the recessive model in cyclists over field hockey players (OR: 0.00, 95% CI: 0.00–0.35, p = 0.002). Our study shows a significant difference between cyclists and field hockey players in terms of the genotypic and allelic frequency of the SNP rs1761667 of the CD36 gene. This divergence suggests a probable association between genetic variations in the CD36 gene and the type of sport in elite Moroccan athletes

    Genotypic and Allelic Distribution of the CD36 rs1761667 Polymorphism in High-Level Moroccan Athletes: A Pilot Study

    No full text
    International audiencePrevious studies have shown that variations in the CD36 gene may affect phenotypes associated with fat metabolism as the CD36 protein facilitates the transport of fatty acids to the mitochondria for oxidation. However, no previous study has tested whether variations in the CD36 gene are associated with sports performance. We investigated the genotypic and allelic distribution of the single-nucleotide polymorphism (SNP) rs1761667 in the CD36 gene in elite Moroccan athletes (cyclists and hockey players) in comparison with healthy non-athletes of the same ethnic origin. Forty-three Moroccan elite male athletes (nineteen cyclists and twenty-four field hockey players) belonging to the national teams of their respective sports (athlete group) were compared to twenty-eight healthy, active, male university students (control group). Genotyping of the CD36 rs1761667 (G>A) SNP was performed via polymerase chain reaction (PCR) and Sanger sequencing. A chi-square (χ2) test was used to assess the Hardy–Weinberg equilibrium (HWE) and to compare allele and genotype frequencies in the “athlete” and “control” groups. The genotypic distribution of the CD36 rs1761667 polymorphism was similar in elite athletes (AA: 23.81, AG: 59.52, and GG: 16.67%) and controls (AA: 19.23, AG: 69.23, and GG: 11.54%; χ2 = 0.67, p = 0.71). However, the genotypic distribution of the CD36 rs1761667 polymorphism was different between cyclists (AA: 0.00, AG: 72.22, and GG: 27.78%) and hockey players (AA: 41.67, AG: 50.00, and GG: 8.33%; χ2 = 10.69, p = 0.004). Specifically, the frequency of the AA genotype was significantly lower in cyclists than in hockey players (p = 0.02). In terms of allele frequency, a significant difference was found between cyclists versus field hockey players (χ2 = 7.72, p = 0.005). Additionally, there was a predominance of the recessive model in cyclists over field hockey players (OR: 0.00, 95% CI: 0.00–0.35, p = 0.002). Our study shows a significant difference between cyclists and field hockey players in terms of the genotypic and allelic frequency of the SNP rs1761667 of the CD36 gene. This divergence suggests a probable association between genetic variations in the CD36 gene and the type of sport in elite Moroccan athletes

    The gliotransmitter ACBP controls feeding and energy homeostasis via the melanocortin system

    Get PDF
    Glial cells have emerged as key players in the central control of energy balance and etiology of obesity. Astrocytes play a central role in neural communication via the release of gliotransmitters. Acyl-CoA binding protein (ACBP)-derived endozepines are secreted peptides that modulate the GABAA receptor. In the hypothalamus, ACBP is enriched in arcuate nucleus (ARC) astrocytes, ependymocytes and tanycytes. Central administration of the endozepine octadecaneuropeptide (ODN) reduces feeding and improves glucose tolerance, yet the contribution of endogenous ACBP in energy homeostasis is unknown. We demonstrated that ACBP deletion in GFAP+ astrocytes, but not in Nkx2.1-lineage neural cells, promoted diet-induced hyperphagia and obesity in both male and female mice, an effect prevented by viral rescue of ACBP in ARC astrocytes. ACBP-astrocytes were observed in apposition with proopiomelanocortin (POMC) neurons and ODN selectively activated POMC neurons through the ODN-GPCR but not GABAA, and supressed feeding while increasing carbohydrate utilization via the melanocortin system. Similarly, ACBP overexpression in ARC astrocytes reduced feeding and weight gain. Finally, the ODN-GPCR agonist decreased feeding and promoted weight loss in ob/ob mice. These findings uncover ACBP as an ARC gliopeptide playing a key role in energy balance control and exerting strong anorectic effects via the central melanocortin system.Dissection des mécanismes hypothalamiques impliqués dans la détection du statut nutritionnel et régulation de la prise alimentaire via les interactions entre mTORC1, les mélanocortines et les endocannabinoïdes.Rôle du récepteur aux cannabinoïdes de type 1 mitochondriale dans les circuits hypothalamiques et son interaction avec la voie mTORC1 dans l'obésité

    Paediatric COVID-19 mortality: a database analysis of the impact of health resource disparity

    No full text
    Background The impact of the COVID-19 pandemic on paediatric populations varied between high-income countries (HICs) versus low-income to middle-income countries (LMICs). We sought to investigate differences in paediatric clinical outcomes and identify factors contributing to disparity between countries.Methods The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) COVID-19 database was queried to include children under 19 years of age admitted to hospital from January 2020 to April 2021 with suspected or confirmed COVID-19 diagnosis. Univariate and multivariable analysis of contributing factors for mortality were assessed by country group (HICs vs LMICs) as defined by the World Bank criteria.Results A total of 12 860 children (3819 from 21 HICs and 9041 from 15 LMICs) participated in this study. Of these, 8961 were laboratory-confirmed and 3899 suspected COVID-19 cases. About 52% of LMICs children were black, and more than 40% were infants and adolescent. Overall in-hospital mortality rate (95% CI) was 3.3% [=(3.0% to 3.6%), higher in LMICs than HICs (4.0% (3.6% to 4.4%) and 1.7% (1.3% to 2.1%), respectively). There were significant differences between country income groups in intervention profile, with higher use of antibiotics, antivirals, corticosteroids, prone positioning, high flow nasal cannula, non-invasive and invasive mechanical ventilation in HICs. Out of the 439 mechanically ventilated children, mortality occurred in 106 (24.1%) subjects, which was higher in LMICs than HICs (89 (43.6%) vs 17 (7.2%) respectively). Pre-existing infectious comorbidities (tuberculosis and HIV) and some complications (bacterial pneumonia, acute respiratory distress syndrome and myocarditis) were significantly higher in LMICs compared with HICs. On multivariable analysis, LMIC as country income group was associated with increased risk of mortality (adjusted HR 4.73 (3.16 to 7.10)).Conclusion Mortality and morbidities were higher in LMICs than HICs, and it may be attributable to differences in patient demographics, complications and access to supportive and treatment modalities

    Association of Country Income Level With the Characteristics and Outcomes of Critically Ill Patients Hospitalized With Acute Kidney Injury and COVID-19

    No full text
    Introduction: Acute kidney injury (AKI) has been identified as one of the most common and significant problems in hospitalized patients with COVID-19. However, studies examining the relationship between COVID-19 and AKI in low- and low-middle income countries (LLMIC) are lacking. Given that AKI is known to carry a higher mortality rate in these countries, it is important to understand differences in this population. Methods: This prospective, observational study examines the AKI incidence and characteristics of 32,210 patients with COVID-19 from 49 countries across all income levels who were admitted to an intensive care unit during their hospital stay. Results: Among patients with COVID-19 admitted to the intensive care unit, AKI incidence was highest in patients in LLMIC, followed by patients in upper-middle income countries (UMIC) and high-income countries (HIC) (53%, 38%, and 30%, respectively), whereas dialysis rates were lowest among patients with AKI from LLMIC and highest among those from HIC (27% vs. 45%). Patients with AKI in LLMIC had the largest proportion of community-acquired AKI (CA-AKI) and highest rate of in-hospital death (79% vs. 54% in HIC and 66% in UMIC). The association between AKI, being from LLMIC and in-hospital death persisted even after adjusting for disease severity. Conclusions: AKI is a particularly devastating complication of COVID-19 among patients from poorer nations where the gaps in accessibility and quality of healthcare delivery have a major impact on patient outcomes

    Thrombotic and hemorrhagic complications of COVID-19 in adults hospitalized in high-income countries compared with those in adults hospitalized in low- and middle-income countries in an international registry

    No full text
    Background: COVID-19 has been associated with a broad range of thromboembolic, ischemic, and hemorrhagic complications (coagulopathy complications). Most studies have focused on patients with severe disease from high-income countries (HICs). Objectives: The main aims were to compare the frequency of coagulopathy complications in developing countries (low- and middle-income countries [LMICs]) with those in HICs, delineate the frequency across a range of treatment levels, and determine associations with in-hospital mortality. Methods: Adult patients enrolled in an observational, multinational registry, the International Severe Acute Respiratory and Emerging Infections COVID-19 study, between January 1, 2020, and September 15, 2021, met inclusion criteria, including admission to a hospital for laboratory-confirmed, acute COVID-19 and data on complications and survival. The advanced-treatment cohort received care, such as admission to the intensive care unit, mechanical ventilation, or inotropes or vasopressors; the basic-treatment cohort did not receive any of these interventions. Results: The study population included 495,682 patients from 52 countries, with 63% from LMICs and 85% in the basic treatment cohort. The frequency of coagulopathy complications was higher in HICs (0.76%-3.4%) than in LMICs (0.09%-1.22%). Complications were more frequent in the advanced-treatment cohort than in the basic-treatment cohort. Coagulopathy complications were associated with increased in-hospital mortality (odds ratio, 1.58; 95% CI, 1.52-1.64). The increased mortality associated with these complications was higher in LMICs (58.5%) than in HICs (35.4%). After controlling for coagulopathy complications, treatment intensity, and multiple other factors, the mortality was higher among patients in LMICs than among patients in HICs (odds ratio, 1.45; 95% CI, 1.39-1.51). Conclusion: In a large, international registry of patients hospitalized for COVID-19, coagulopathy complications were more frequent in HICs than in LMICs (developing countries). Increased mortality associated with coagulopathy complications was of a greater magnitude among patients in LMICs. Additional research is needed regarding timely diagnosis of and intervention for coagulation derangements associated with COVID-19, particularly for limited-resource settings

    Characteristics and outcomes of an international cohort of 600 000 hospitalized patients with COVID-19

    Get PDF
    Background: We describe demographic features, treatments and clinical outcomes in the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) COVID-19 cohort, one of the world's largest international, standardized data sets concerning hospitalized patients. Methods: The data set analysed includes COVID-19 patients hospitalized between January 2020 and January 2022 in 52 countries. We investigated how symptoms on admission, co-morbidities, risk factors and treatments varied by age, sex and other characteristics. We used Cox regression models to investigate associations between demographics, symptoms, co-morbidities and other factors with risk of death, admission to an intensive care unit (ICU) and invasive mechanical ventilation (IMV). Results: Data were available for 689 572 patients with laboratory-confirmed (91.1%) or clinically diagnosed (8.9%) SARS-CoV-2 infection from 52 countries. Age [adjusted hazard ratio per 10 years 1.49 (95% CI 1.48, 1.49)] and male sex [1.23 (1.21, 1.24)] were associated with a higher risk of death. Rates of admission to an ICU and use of IMV increased with age up to age 60 years then dropped. Symptoms, co-morbidities and treatments varied by age and had varied associations with clinical outcomes. The case-fatality ratio varied by country partly due to differences in the clinical characteristics of recruited patients and was on average 21.5%. Conclusions: Age was the strongest determinant of risk of death, with a ∼30-fold difference between the oldest and youngest groups; each of the co-morbidities included was associated with up to an almost 2-fold increase in risk. Smoking and obesity were also associated with a higher risk of death. The size of our international database and the standardized data collection method make this study a comprehensive international description of COVID-19 clinical features. Our findings may inform strategies that involve prioritization of patients hospitalized with COVID-19 who have a higher risk of death

    The value of open-source clinical science in pandemic response: lessons from ISARIC

    No full text
    International audienc
    corecore