3,833 research outputs found
A study to determine similarities and variances among medical-surgical nursing instructors in rating selected science principles underlying the nursing care of a patient with an ileostomy
Thesis (M.S.)--Boston Universit
Daily and seasonal variations in the spatial distribution of zooplankton populations in relation to the physical structure in the Ligurian Sea Front
Results from five hydrographic and biological surveys at different seasons across the Ligurian Sea front, using horizontal continuous measurements and vertical profiles are presented. The vertical circulation across the front is described, and two divergences and one convergence are identified as permanent features from data. The key to find their location for each survey is given. The spatial patterns of 14 zooplankton taxa along the transect are established using variance analysis, principal component and correspondence analyses. The spatial distribution of each taxon is related to the physical structure, and the convection cells evidenced by the scheme appear as different biotopes. The daily variability of the spatial distributions is negligible compared to the annual variability. Distinctions are made between coastal species always inhabiting the peripheral (coastal zone) and others with distinct coastal, frontal and offshore distributions varying with the season. For the latter species the frontal zone is a preferential biotope during their seasonal growth period. Consequently the accumulation of organisms near the convergence cannot be created by only the dynamic causes. The role of biological processes in the observed distributions is discussed
DETERMINATION OF THE INOCULATION FREQUENCY, TIMING OF INOCULATION AND DOSE OF A BACTERIAL RUMINAL INOCULANT FOR ACIDOSIS PREVENTION IN FEEDLOT CATTLE
We are evaluating the efficacy of a ruminal bacterial inoculant (Megasphaera elsdenii 407 A) for prevention of acute acidosis in grain-fed cattle. As a part of this process, we examined the effects of inoculation frequency, timing of inoculation and dose of 407 A for prevention of acute acidosis in ruminally fistulated cattle. Three levels of frequency, two levels of timing and three doses were considered, however, a complete 3x2x3 factorial study was not run because of resource constraints. The study was conducted in two separate trials. The first was designed as a 3x2 factorial experiment with inoculation frequency and timing of inoculation while holding dose constant. The second trial was designed as a 2x3 factorial experiment involving inoculation frequency and 407 A dose while holding timing constant. Both of these trials were conducted as complete block designs with seven blocks, with repeated measurements of ruminal lactic acid made across the duration of the two trials. Changes in ruminal pH for acutely acidotic cattle (pH:≤;5.0) are known to be driven largely by changes in total ruminal lactic acid concentration and that is why this variable was selected for these trials. Area under the lactic acid curves was selected as a method of summarizing across the repeated measures. Response surface techniques were used to determine the optimal settings for the treatment factors examined. Alternative designs will be contrasted
From Skew-Cyclic Codes to Asymmetric Quantum Codes
We introduce an additive but not -linear map from
to and exhibit some of its interesting
structural properties. If is a linear -code, then is an
additive -code. If is an additive cyclic code then
is an additive quasi-cyclic code of index . Moreover, if is a module
-cyclic code, a recently introduced type of code which will be
explained below, then is equivalent to an additive cyclic code if is
odd and to an additive quasi-cyclic code of index if is even. Given any
-code , the code is self-orthogonal under the trace
Hermitian inner product. Since the mapping preserves nestedness, it can be
used as a tool in constructing additive asymmetric quantum codes.Comment: 16 pages, 3 tables, submitted to Advances in Mathematics of
Communication
Introducing the Dark Energy Universe Simulation Series (DEUSS)
In this "Invisible Universe" proceedings, we introduce the Dark Energy
Universe Simulation Series (DEUSS) which aim at investigating the imprints of
realistic dark energy models on cosmic structure formation. It represents the
largest dynamical dark energy simulation suite to date in term of spatial
dynamics. We first present the 3 realistic dark energy models (calibrated on
latest SNIa and CMB data): LambdaCDM, quintessence with Ratra-Peebles
potential, and quintessence with Sugra potential. We then isolate various
contributions for non-linear matter power spectra from a series of pre-DEUSS
high-resolution simulations (130 million particles). Finally, we introduce
DEUSS which consist in 9 Grand Challenge runs with 1 billion particles each
thus probing scales from 4 Gpc down to 3 kpc at z=0. Our goal is to make these
simulations available to the community through the "Dark Energy Universe
Virtual Observatory" (DEUVO), and the "Dark Energy Universe Simulations" (DEUS)
consortium.Comment: 6 pages, 3 figures, to appear in the AIP proceedings of the
'Invisible Universe International Conference', UNESCO-Paris, June 29-July 3,
200
A magnetic model for the incommensurate I phase of spin-Peierls systems
A magnetic model is proposed for describing the incommensurate I phase of
spin-Peierls systems. Based on the harmonicity of the lattice distortion, its
main ingredient is that the distortion of the lattice adjusts to the average
magnetization such that the system is always gapful. The presence of dynamical
incommensurabilities in the fluctuation spectra is also predicted. Recent
experimental results for CuGeO_3 obtained by NMR, ESR and light scattering
absorption are well understood within this model.Comment: 8 pages, 3 figures, Latex with EPL style files all include
On the Asymptotic Stability of De-Sitter Spacetime: a non-linear perturbative approach
We derive evolution and constraint equations for second order perturbations
of flat dust homogeneous and isotropic solutions to the Einstein field
equations using all scalar, vector and tensor perturbation modes. We show that
the perturbations decay asymptotically in time and that the solutions converge
to the De-Sitter solution. By induction, this result is valid for perturbations
of arbitrary order. This is in agreement with the cosmic no-hair conjecture of
Gibbons and Hawking.Comment: 11 pages, 2 figure
Quantum internal modes of solitons in 1d easy-plane antiferromagnet in strong magnetic field
In presence of a strong external magnetic field the dynamics of solitons in a
one-dimensional easy-plane Heisenberg antiferromagnet exhibits a number of
peculiarities. Dynamics of internal soliton degrees of freedom is essentially
quantum, and they are strongly coupled to the "translational" mode of soliton
movement. These peculiarities lead to considerable changes in the response
functions of the system which can be detected experimentally.Comment: 8 pages, RevTeX, 6 figures, uses psfig.sty, submitted to PR
A Spectral Line Survey of Selected 3 mm Bands Toward Sagittarius B2(N-LMH) Using the NRAO 12 Meter Radio Telescope and the BIMA Array I. The Observational Data
We have initiated a spectral line survey, at a wavelength of 3 millimeters,
toward the hot molecular core Sagittarius B2(N-LMH). This is the first spectral
line survey of the Sgr B2(N) region utilizing data from both an interferometer
(BIMA Array) and a single-element radio telescope (NRAO 12 meter). In this
survey, covering 3.6 GHz in bandwidth, we detected 218 lines (97 identified
molecular transitions, 1 recombination line, and 120 unidentified transitions).
This yields a spectral line density (lines per 100 MHz) of 6.06, which is much
larger than any previous 3 mm line survey. We also present maps from the BIMA
Array that indicate that most highly saturated species (3 or more H atoms) are
products of grain chemistry or warm gas phase chemistry. Due to the nature of
this survey we are able to probe each spectral line on multiple spatial scales,
yielding information that could not be obtained by either instrument alone.Comment: 35 pages, 15 figures, to be published in The Astrophysical Journa
Ecophysiological modeling of photosynthesis and carbon allocation to the tree stem in the boreal forest
A better understanding of the coupling between photosynthesis and carbon allocation in the boreal forest, together with its associated environmental factors and mechanistic rules, is crucial to accurately predict boreal forest carbon stocks and fluxes, which are significant components of the global carbon budget. Here, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species, such as nonlinear acclimation of photosynthesis to temperature changes, canopy development as a function of previous-year climate variables influencing bud formation and the temperature dependence of carbon partition in summer. We tested these modifications in the eastern Canadian taiga using black spruce (Picea mariana (Mill.) B.S.P.) gross primary production and ring width data. MAIDEN explains 90% of the observed daily gross primary production variability, 73% of the annual ring width variability and 20-30% of its high-frequency component (i.e., when decadal trends are removed). The positive effect on stem growth due to climate warming over the last several decades is well captured by the model. In addition, we illustrate how we improve the model with each introduced model adaptation and compare the model results with those of linear response functions. Our results demonstrate that MAIDEN simulates robust relationships with the most important climate variables (those detected by classical response-function analysis) and is a powerful tool for understanding how environmental factors interact with black spruce ecophysiol-ogy to influence present-day and future boreal forest carbon fluxes.Peer reviewe
- …