176 research outputs found

    Relativistic Calculation of two-Electron one-Photon and Hypersatellite Transition Energies for 12≤Z≤3012\leq Z\leq30 Elements

    Full text link
    Energies of two-electron one-photon transitions from initial double K-hole states were computed using the Dirac-Fock model. The transition energies of competing processes, the Kα\alpha hypersatellites, were also computed. The results are compared to experiment and to other theoretical calculations.Comment: accepted versio

    Occipital Proton Magnetic Resonance Spectroscopy ((1)H-MRS) Reveals Normal Metabolite Concentrations in Retinal Visual Field Defects

    Get PDF
    BACKGROUND: Progressive visual field defects, such as age-related macular degeneration and glaucoma, prevent normal stimulation of visual cortex. We investigated whether in the case of visual field defects, concentrations of metabolites such as N-acetylaspartate (NAA), a marker for degenerative processes, are reduced in the occipital brain region. METHODOLOGY/PRINCIPAL FINDINGS: Participants known with glaucoma, age-related macular degeneration (the two leading causes of visual impairment in the developed world), and controls were examined by proton MR spectroscopic ((1)H-MRS) imaging. Absolute NAA, Creatine and Choline concentrations were derived from a single-voxel in the occipital region of each brain hemisphere. No significant differences in metabolites concentrations were found between the three groups. CONCLUSIONS/SIGNIFICANCE: We conclude that progressive retinal visual field defects do not affect metabolite concentration in visual brain areas suggesting that there is no ongoing occipital degeneration. We discuss the possibility that metabolite change is too slow to be detectable

    To respond or not to respond - a personal perspective of intestinal tolerance

    Get PDF
    For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research

    Stereoselective Synthesis of (-)-Spicigerolide

    Get PDF
    (-)-Spicigerolide was enantioselectively synthesized from a protected (S)-lactaldehyde. The synthesis of the polyacetylated framework relied on two Zn-mediated stereoselective additions of alkynes to aldehydes as well as a regiocontrolled [3,3]-sigmatropic rearrangement of an allylic acetate. The pyranone moiety was constructed via ring-closing metathesis

    Extra-Visual Functional and Structural Connection Abnormalities in Leber's Hereditary Optic Neuropathy

    Get PDF
    We assessed abnormalities within the principal brain resting state networks (RSNs) in patients with Leber's hereditary optic neuropathy (LHON) to define whether functional abnormalities in this disease are limited to the visual system or, conversely, tend to be more diffuse. We also defined the structural substrates of fMRI changes using a connectivity-based analysis of diffusion tensor (DT) MRI data. Neuro-ophthalmologic assessment, DT MRI and RS fMRI data were acquired from 13 LHON patients and 13 healthy controls. RS fMRI data were analyzed using independent component analysis and SPM5. A DT MRI connectivity-based parcellation analysis was performed using the primary visual and auditory cortices, bilaterally, as seed regions. Compared to controls, LHON patients had a significant increase of RS fluctuations in the primary visual and auditory cortices, bilaterally. They also showed decreased RS fluctuations in the right lateral occipital cortex and right temporal occipital fusiform cortex. Abnormalities of RS fluctuations were correlated significantly with retinal damage and disease duration. The DT MRI connectivity-based parcellation identified a higher number of clusters in the right auditory cortex in LHON vs. controls. Differences of cluster-centroid profiles were found between the two groups for all the four seeds analyzed. For three of these areas, a correspondence was found between abnormalities of functional and structural connectivities. These results suggest that functional and structural abnormalities extend beyond the visual network in LHON patients. Such abnormalities also involve the auditory network, thus corroborating the notion of a cross-modal plasticity between these sensory modalities in patients with severe visual deficits

    Presenilin/γ-Secretase Regulates Neurexin Processing at Synapses

    Get PDF
    Neurexins are a large family of neuronal plasma membrane proteins, which function as trans-synaptic receptors during synaptic differentiation. The binding of presynaptic neurexins to postsynaptic partners, such as neuroligins, has been proposed to participate in a signaling pathway that regulates synapse formation/stabilization. The identification of mutations in neurexin genes associated with autism and mental retardation suggests that dysfunction of neurexins may underlie synaptic defects associated with brain disorders. However, the mechanisms that regulate neurexin function at synapses are still unclear. Here, we show that neurexins are proteolytically processed by presenilins (PS), the catalytic components of the γ-secretase complex that mediates the intramembraneous cleavage of several type I membrane proteins. Inhibition of PS/γ-secretase by using pharmacological and genetic approaches induces a drastic accumulation of neurexin C-terminal fragments (CTFs) in cultured rat hippocampal neurons and mouse brain. Neurexin-CTFs accumulate mainly at the presynaptic terminals of PS conditional double knockout (PS cDKO) mice lacking both PS genes in glutamatergic neurons of the forebrain. The fact that loss of PS function enhances neurexin accumulation at glutamatergic terminals mediated by neuroligin-1 suggests that PS regulate the processing of neurexins at glutamatergic synapses. Interestingly, presenilin 1 (PS1) is recruited to glutamatergic terminals mediated by neuroligin-1, thus concentrating PS1 at terminals containing β-neurexins. Furthermore, familial Alzheimer's disease (FAD)-linked PS1 mutations differentially affect β-neurexin-1 processing. Expression of PS1 M146L and PS1 H163R mutants in PS−/− cells rescues the processing of β-neurexin-1, whereas PS1 C410Y and PS1 ΔE9 fail to rescue the processing defect. These results suggest that PS regulate the synaptic function and processing of neurexins at glutamatergic synapses, and that impaired neurexin processing by PS may play a role in FAD

    Does the diurnal cycle of cortisol explain the relationship between physical performance and cognitive function in older adults?

    Get PDF
    Background Regular physical activity is a promising strategy to treat and prevent cognitive decline. The mechanisms that mediate these benefits are not fully clear but physical activity is thought to attenuate the harmful effects of chronic psychological stress and hypercortisolism on cognition. However, the circadian pattern of cortisol secretion is complex and it is not known which aspects are most closely associated with increased cognitive function and better physical performance. This is the first study to simultaneously measure cognitive function, the diurnal cycle of salivary cortisol and physical performance in older adults, without cognitive impairment (n = 30) and with amnestic Mild Cognitive Impairment (aMCI) (n = 30). Results Regression analysis showed that better cognitive function was associated with better physical performance. A greater variance in cortisol levels across the day from morning to evening was associated with better cognitive function and physical performance. Conclusions The results support the idea that a more dynamic cortisol secretion pattern is associated with better cognitive function and physical performance even in the presence of cognitive impairment, but our results could not confirm a mediating role in this relationship

    Surface-Based Analyses of Anatomical Properties of the Visual Cortex in Macular Degeneration

    Get PDF
    INTRODUCTION: Macular degeneration (MD) can cause a central visual field defect. In a previous study, we found volumetric reductions along the entire visual pathways of MD patients, possibly indicating degeneration of inactive neuronal tissue. This may have important implications. In particular, new therapeutic strategies to restore retinal function rely on intact visual pathways and cortex to reestablish visual function. Here we reanalyze the data of our previous study using surface-based morphometry (SBM) rather than voxel-based morphometry (VBM). This can help determine the robustness of the findings and will lead to a better understanding of the nature of neuroanatomical changes associated with MD. METHODS: The metrics of interest were acquired by performing SBM analysis on T1-weighted MRI data acquired from 113 subjects: patients with juvenile MD (JMD; n = 34), patients with age-related MD (AMD; n = 24) and healthy age-matched controls (HC; n = 55). RESULTS: Relative to age-matched controls, JMD patients showed a thinner cortex, a smaller cortical surface area and a lower grey matter volume in V1 and V2, while AMD patients showed thinning of the cortex in V2. Neither patient group showed a significant difference in mean curvature of the visual cortex. DISCUSSION: The thinner cortex, smaller surface area and lower grey matter volume in the visual cortex of JMD patients are consistent with our previous results showing a volumetric reduction in their visual cortex. Finding comparable results using two rather different analysis techniques suggests the presence of marked cortical degeneration in the JMD patients. In the AMD patients, we found a thinner cortex in V2 but not in V1. In contrast to our previous VBM analysis, SBM revealed no volumetric reductions of the visual cortex. This suggests that the cortical changes in AMD patients are relatively subtle, as they apparently can be missed by one of the methods
    • …
    corecore