75 research outputs found

    Individual mapping of innate immune cell activation is a candidate marker of patient-specific trajectories of disability worsening in Multiple Sclerosis

    Get PDF
    Objective: To develop a novel approach to generate individual maps of white matter (WM) innate immune cell activation using 18F-DPA-714 translocator protein (TSPO) positron emission tomography (PET), and to explore the relationship between these maps and individual trajectories of disability worsening in patients with multiple sclerosis (MS). Methods: Patients with MS (n = 37), whose trajectories of disability worsening over the 2 years preceding study entry were calculated, and healthy controls (n = 19) underwent magnetic resonance magnetic and 18F-DPA-714 PET. A threshold of significant activation of 18F-DPA-714 binding was calculated with a voxel-wise randomized permutation-based comparison between patients and controls, and used to classify each WM voxel in patients as characterized by a significant activation of innate immune cells (DPA+) or not. Individual maps of innate immune cell activation in the WM were employed to calculate the extent of activation in WM regions-of-interests and to classify each WM lesion as "DPA-active", "DPA-inactive" or "unclassified". Results: Compared with the WM of healthy controls, patients with MS had a significantly higher percentage of DPA+ voxels in the normal-appearing WM, (NAWM in patients=24.9±9.7%; WM in controls=14.0±7.8%, p<0.001). In patients with MS, the percentage of DPA+ voxels showed a significant increase from NAWM, to perilesional areas, T2 hyperintense lesions and T1 hypointense lesions (38.1±13.5%, 45.0±17.9%, and 51.9±22.9%, respectively, p<0.001). Among the 1379 T2 lesions identified, 512 were defined as DPA-active and 258 as DPA-inactive. A higher number of lesions classified as DPA-active (OR=1.13, P = 0.009), a higher percentage of DPA+ voxels in the NAWM (OR=1.16, P = 0.009) and in T1-spin-echo lesions (OR=1.06, P = 0.036), were significantly associated with a retrospective more severe clinical trajectory in patients with MS. Conclusion: A more severe trajectory of disability worsening in MS is associated with an innate immune cells activation inside and around WM lesions. 18F-DPA-714 PET may provide a promising biomarker to identify patients at risk of severe clinical trajectory

    Alteration of the in vivo nicotinic receptor density in ADNFLE patients: a PET study

    Get PDF
    Nicotinic acetylcholine receptors (nAChRs) are involved in a familial form of frontal lobe epilepsy, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). In several ADNFLE families, mutations were identified in the nAChR α4 or β2 subunit, which together compose the main cerebral nAChR. Electrophysiological assessment using in vitro expression systems indicated a gain of function of the mutant receptors. However the precise mechanisms by which they contribute to the pathogenesis of a focal epilepsy remain obscure, especially since α4β2 nAChRs are known to be widely distributed within the entire brain. PET study using [18F]-F-A-85380, a high affinity agonist at the α4β2 nAChRs, allows the determination of the regional distribution and density of the nAChRs in healthy volunteers and in ADNFLE patients, thus offering a unique opportunity to investigate some in vivo consequences of the molecular defect. We have assessed nAChR distribution in eight non-smoking ADNFLE patients (from five families) bearing an identified mutation in nAChRs and in seven age-matched non-smoking healthy volunteers using PET and [18F]-F-A-85380. Parametric images of volume of distribution (Vd) were generated as the ratio of tissue to plasma radioactivities. The images showed a clear difference in the pattern of the nAChR density in the brains of the patients compared to the healthy volunteers. Vd values revealed a significant increase (between 12 and 21%, P < 0.05) in the ADNFLE patients in the mesencephalon, the pons and the cerebellum when compared to control subjects. Statistical parametric mapping (SPM) was then used to better analyse subtle regional differences. This analysis confirmed clear regional differences between patients and controls: patients had increased nAChR density in the epithalamus, ventral mesencephalon and cerebellum, but decreased nAChR density in the right dorsolateral prefrontal region. In five patients who underwent an additional [18F]-fluorodeoxyglucose (FDG) PET experiment, hypometabolism was observed in the neighbouring area of the right orbitofrontal cortex. The demonstration of a regional nAChR density decrease in the prefrontal cortex, despite the known distribution of these receptors throughout the cerebral cortex, is consistent with a focal epilepsy involving the frontal lobe. We also propose that the nAChR density increase in mesencephalon is involved in the pathophysiology of ADNFLE through the role of brainstem ascending cholinergic systems in arousa

    Dynamic imaging of individual remyelination profiles in multiple sclerosis

    Get PDF
    Background Quantitative in vivo imaging of myelin loss and repair in patients with multiple sclerosis (MS) is essential to understand the pathogenesis of the disease and to evaluate promyelinating therapies. Selectively binding myelin in the central nervous system white matter, Pittsburgh compound B ([11C]PiB) can be used as a positron emission tomography (PET) tracer to explore myelin dynamics in MS. Methods Patients with active relapsing-remitting MS (n = 20) and healthy controls (n = 8) were included in a longitudinal trial combining PET with [11C]PiB and magnetic resonance imaging. Voxel-wise maps of [11C]PiB distribution volume ratio, reflecting myelin content, were derived. Three dynamic indices were calculated for each patient: the global index of myelin content change; the index of demyelination; and the index of remyelination. Results At baseline, there was a progressive reduction in [11C]PiB binding from the normal-appearing white matter to MS lesions, reflecting a decline in myelin content. White matter lesions were characterized by a centripetal decrease in the tracer binding at the voxel level. During follow-up, high between-patient variability was found for all indices of myelin content change. Dynamic remyelination was inversely correlated with clinical disability (p = 0.006 and beta-coefficient = -0.67 with the Expanded Disability Status Scale; p = 0.003 and beta-coefficient = -0.68 with the MS Severity Scale), whereas no significant clinical correlation was found for the demyelination index. Interpretation [11C]PiB PET allows quantification of myelin dynamics in MS and enables stratification of patients depending on their individual remyelination potential, which significantly correlates with clinical disability. This technique should be considered to assess novel promyelinating drugs. Ann Neurol 2016;79:726-73

    The SIGMA rat brain templates and atlases for multimodal MRI data analysis and visualization

    Get PDF
    Preclinical imaging studies offer a unique access to the rat brain, allowing investigations that go beyond what is possible in human studies. Unfortunately, these techniques still suffer from a lack of dedicated and standardized neuroimaging tools, namely brain templates and descriptive atlases. Here, we present two rat brain MRI templates and their associated gray matter, white matter and cerebrospinal fluid probability maps, generated from ex vivo [Formula: see text]-weighted images (90 µm isotropic resolution) and in vivo T2-weighted images (150 µm isotropic resolution). In association with these templates, we also provide both anatomical and functional 3D brain atlases, respectively derived from the merging of the Waxholm and Tohoku atlases, and analysis of resting-state functional MRI data. Finally, we propose a complete set of preclinical MRI reference resources, compatible with common neuroimaging software, for the investigation of rat brain structures and functions.This work is part of the SIGMA project with the reference FCT-ANR/NEU-OSD/0258/2012, co-financed by the French public funding agency ANR (Agence Nationale pour laRecherche, APP Blanc International II 2012), the Portuguese FCT (Fundação para aCiência e Tecnologia) and the Portuguese North Regional Operational Program (ON.2—O Novo Norte) under the National Strategic Reference Framework (QREN), through theEuropean Regional Development Fund (FEDER) as well as the Projecto Estratégico co-funded by FCT (PEst-C/SAU/LA0026-/2013) and the European Regional DevelopmentFund COMPETE (FCOMP-01-0124-FEDER-037298). D.A.B. and A.N. were funded bygrants from FCT-ANR/NEU-OSD/0258/2012. R.M. was supported by the FCT fellow-ship grant with the reference PDE/BDE/113604/2015 from the PhDiHES program. A.C.was supported by a grant from the foundation NRJ. P.M. was funded by FundaçãoCalouste Gulbenkian (Portugal;‘Better mental health during ageing based on temporalprediction of individual brain ageing trajectories TEMPO’) with Grant Number P-139977. France Life Imaging is acknowledged for its support in funding the NeuroSpinplatform of preclinical MRI scanners. The authors also acknowledge and thank EdwardGanz, MD, for proof reading our work

    The dynamics of stress: a longitudinal MRI study of rat brain structure and connectome

    Get PDF
    Stress is a well-established trigger for a number of neuropsychiatric disorders, as it alters both structure and function of several brain regions and its networks. Herein, we conduct a longitudinal neuroimaging study to assess how a chronic unpredictable stress protocol impacts the structure of the rat brain and its functional connectome in both high and low responders to stress. Our results reveal the changes that stress triggers in the brain, with structural atrophy affecting key regions such as the prelimbic, cingulate, insular and retrosplenial, somatosensory, motor, auditory and perirhinal/entorhinal cortices, the hippocampus, the dorsomedial striatum, nucleus accumbens, the septum, the bed nucleus of the stria terminalis, the thalamus and several brain stem nuclei. These structural changes are associated with increasing functional connectivity within a network composed by these regions. Moreover, using a clustering based on endocrine and behavioural outcomes, animals were classified as high and low responders to stress. We reveal that susceptible animals (high responders) develop local atrophy of the ventral tegmental area and an increase in functional connectivity between this area and the thalamus, further spreading to other areas that link the cognitive system with the fight-or-flight system. Through a longitudinal approach we were able to establish two distinct patterns, with functional changes occurring during the exposure to stress, but with an inflection point after the first week of stress when more prominent changes were seen. Finally, our study revealed differences in functional connectivity in a brainstem-limbic network that distinguishes resistant and susceptible responders before any exposure to stress, providing the first potential imaging-based predictive biomarkers of an individual's resilience/vulnerability to stressful conditions.This work is part of the Sigma project with the reference FCT-ANR/NEU-OSD/ 0258/2012 co-financed by the French public funding agency ANR (Agence National pour la Recherche, APP Blanc International II 2012), the Portuguese FCT (Fundação para a Ciência e Tecnologia) and by the Portuguese North Regional Operational Program (ON.2 – O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER) as well as the Projecto Estratégico co-funded by FCT (PEst-C/SAU/LA0026-/2013) and the European Regional Development Fund COMPETE (FCOMP-01-0124-FEDER-037298). DAB and AN were funded by grants from FCT-ANR/NEU-OSD/0258/2012. RM is supported by the FCT fellowship grant with the reference PDE/BDE/113604/2015 from the PhDiHES program; AC was supported by a grant from the foundation NRJ. PM was funded by Fundação Calouste Gulbenkian (Portugal; ‘Better mental health during ageing based on temporal prediction of individual brain ageing trajectories (TEMPO)’), Grant Number P-139977. We thank Drs Patrício Costa and Pedro Moreira for support on the various statistical analyses.info:eu-repo/semantics/publishedVersio

    Modifications of the endosomal compartment in peripheral blood mononuclear cells and fibroblasts from Alzheimer’s disease patients

    Get PDF
    International audienceIdentification of blood-based biomarkers of Alzheimer’s disease (AD) remains a challenge. Neuropathological studies have identified enlarged endosomes in post-mortem brains as the earliest cellular change associated to AD. Here the presence of enlarged endosomes was investigated in peripheral blood mononuclear cells from 48 biologically defined AD patients (25 with mild cognitive impairment and 23 with dementia (AD-D)), and 23 age-matched healthy controls using immunocytochemistry and confocal microscopy. The volume and number of endosomes were not significantly different between AD and controls. However, the percentage of cells containing enlarged endosomes was significantly higher in the AD-D group as compared with controls. Furthermore, endosomal volumes significantly correlated to [C11]PiB cortical index measured by positron emission tomography in the AD group, independently of the APOE genotype, but not to the levels of amyloid-beta, tau and phosphorylated tau measured in the cerebrospinal fluid. Importantly, we confirmed the presence of enlarged endosomes in fibroblasts from six unrelated AD-D patients as compared with five cognitively normal controls. This study is the first, to our knowledge, to report morphological alterations of the endosomal compartment in peripheral cells from AD patients correlated to amyloid load that will now be evaluated as a possible biomarker

    Comparison of Pittsburgh compound B and florbetapir in cross-sectional and longitudinal studies.

    Get PDF
    IntroductionQuantitative in vivo measurement of brain amyloid burden is important for both research and clinical purposes. However, the existence of multiple imaging tracers presents challenges to the interpretation of such measurements. This study presents a direct comparison of Pittsburgh compound B-based and florbetapir-based amyloid imaging in the same participants from two independent cohorts using a crossover design.MethodsPittsburgh compound B and florbetapir amyloid PET imaging data from three different cohorts were analyzed using previously established pipelines to obtain global amyloid burden measurements. These measurements were converted to the Centiloid scale to allow fair comparison between the two tracers. The mean and inter-individual variability of the two tracers were compared using multivariate linear models both cross-sectionally and longitudinally.ResultsGlobal amyloid burden measured using the two tracers were strongly correlated in both cohorts. However, higher variability was observed when florbetapir was used as the imaging tracer. The variability may be partially caused by white matter signal as partial volume correction reduces the variability and improves the correlations between the two tracers. Amyloid burden measured using both tracers was found to be in association with clinical and psychometric measurements. Longitudinal comparison of the two tracers was also performed in similar but separate cohorts whose baseline amyloid load was considered elevated (i.e., amyloid positive). No significant difference was detected in the average annualized rate of change measurements made with these two tracers.DiscussionAlthough the amyloid burden measurements were quite similar using these two tracers as expected, difference was observable even after conversion into the Centiloid scale. Further investigation is warranted to identify optimal strategies to harmonize amyloid imaging data acquired using different tracers
    corecore