1,896 research outputs found

    Modeling the submillimeter emission from the Cepheus A young stellar cluster: Evidence for large scale collapse

    Full text link
    Evidence for a large scale flow of low density gas onto the Cepheus A young stellar cluster is presented. Observations of K-band near-infrared and multi-transition CS and N2H+ millimeter line emission are shown in relation to a sub-millimeter map of the cool dust around the most embedded stars. The near-infrared emission is offset from the dust peak suggesting a shift in the location of star formation over the history of the core. The CS emission is concentrated toward the core center but N2H+ peaks in two main cores offset from the center, opposite to the chemistry observed in low mass cores. A starless core with strong CS but weak N2H+ emission is found toward the western edge of the region. The average CS(2-1) spectrum over the cluster forming core is asymmetrically self-absorbed suggesting infall. We analyze the large scale dynamics by applying a one-dimensional radiative transfer code to a model spherical core with constant temperature and linewidth, and a density profile measured from an archival 850 micron map of the region. The best fit model that matches the three CS profiles requires a low CS abundance in the core and an outer, infalling envelope with a low density and undepleted CS abundance. The integrated intensities of the two N2H+ lines is well matched with a constant N2H+ abundance. The envelope infall velocity is tightly constrained by the CS(2-1) asymmetry and is sub-sonic but the size of the infalling region is poorly determined. The picture of a high density center with depleted CS slowly accreting a low density outer envelope with normal CS abundance suggests that core growth occurs at least partially by the dissipation of turbulent support on large scales.Comment: 8 pages, 5 figures, accepted by Astronomy and Astrophysic

    Balancing building and maintenance costs in growing transport networks

    Get PDF
    The costs associated to the length of links impose unavoidable constraints to the growth of natural and artificial transport networks. When future network developments can not be predicted, building and maintenance costs require competing minimization mechanisms, and can not be optimized simultaneously. Hereby, we study the interplay of building and maintenance costs and its impact on the growth of transportation networks through a non-equilibrium model of network growth. We show cost balance is a sufficient ingredient for the emergence of tradeoffs between the network's total length and transport effciency, of optimal strategies of construction, and of power-law temporal correlations in the growth history of the network. Analysis of empirical ant transport networks in the framework of this model suggests different ant species may adopt similar optimization strategies.Comment: 4 pages main text, 2 pages references, 4 figure

    Modelling the 3D physical structure of astrophysical sources with GASS

    Full text link
    The era of interferometric observations leads to the need of a more and more precise description of physical structures and dynamics of star-forming regions, from pre-stellar cores to protoplanetary discs. The molecular emission can be traced in multiple physical components such as infalling envelopes, outflows and protoplanetary discs. To compare with the observations, a precise and complex radiative transfer modelling of these regions is needed. We present GASS (Generator of Astrophysical Sources Structure), a code that allows us to generate the three-dimensional (3D) physical structure model of astrophysical sources. From the GASS graphical interface, the user easily creates different components such as spherical envelopes, outflows and discs. The physical properties of these components are modelled thanks to dedicated graphical interfaces that display various figures in order to help the user and facilitate the modelling task. For each component, the code randomly generates points in a 3D grid with a sample probability weighted by the molecular density. The created models can be used as the physical structure input for 3D radiative transfer codes to predict the molecular line or continuum emission. An analysis of the output hyper-spectral cube given by such radiative transfer code can be made directly in GASS using the various post-treatment options implemented, such as calculation of moments or convolution with a beam. This makes GASS well suited to model and analyse both interferometric and single-dish data. This paper is focused on the results given by the association of GASS and LIME, a 3D radiative transfer code, and we show that the complex geometry observed in star-forming regions can be adequately handled by GASS+LIME

    Three-dimensional maps and subgroup growth

    Full text link
    In this paper we derive a generating series for the number of cellular complexes known as pavings or three-dimensional maps, on nn darts, thus solving an analogue of Tutte's problem in dimension three. The generating series we derive also counts free subgroups of index nn in Δ+=Z2Z2Z2\Delta^+ = \mathbb{Z}_2*\mathbb{Z}_2*\mathbb{Z}_2 via a simple bijection between pavings and finite index subgroups which can be deduced from the action of Δ+\Delta^+ on the cosets of a given subgroup. We then show that this generating series is non-holonomic. Furthermore, we provide and study the generating series for isomorphism classes of pavings, which correspond to conjugacy classes of free subgroups of finite index in Δ+\Delta^+. Computational experiments performed with software designed by the authors provide some statistics about the topology and combinatorics of pavings on n16n\leq 16 darts.Comment: 17 pages, 6 figures, 1 table; computational experiments added; a new set of author

    Chemistry of massive young stellar objects with a disk-like structure

    Get PDF
    Our goal is to take an inventory of complex molecules in three well-known high-mass protostars for which disks or toroids have been claimed and to study the similarities and differences with a sample of massive YSOs without evidence of such flattened disk-like structures. With a disk-like geometry, UV radiation can escape more readily and potentially affect the ice and gas chemistry on hot-core scales. A partial submillimeter line survey, targeting CH3OH, H2CO, C2H5OH, HCOOCH3, CH3OCH3, CH3CN, HNCO, NH2CHO, C2H5CN, CH2CO, HCOOH, CH3CHO, and CH3CCH, was made toward three massive YSOs with disk-like structures, IRAS20126+4104, IRAS18089-1732, and G31.41+0.31. Rotation temperatures and column densities were determined by the rotation diagram method, as well as by independent spectral modeling. The molecular abundances were compared with previous observations of massive YSOs without evidence of any disk structure, targeting the same molecules with the same settings and using the same analysis method. Consistent with previous studies, different complex organic species have different characteristic rotation temperatures and can be classified either as warm (>100 K) or cold (<100 K). The excitation temperatures and abundance ratios are similar from source to source and no significant difference can be established between the two source types. Acetone, CH3COCH3, is detected for the first time in G31.41+0.31 and IRAS18089-1732. Temperatures and abundances derived from the two analysis methods generally agree within factors of a few. The lack of chemical differentiation between massive YSOs with and without observed disks suggest either that the chemical complexity is already fully established in the ices in the cold prestellar phase or that the material experiences similar physi- cal conditions and UV exposure through outflow cavities during the short embedded lifetime

    Influence of homology and node-age on the growth of protein-protein interaction networks

    Get PDF
    Proteins participating in a protein-protein interaction network can be grouped into homology classes following their common ancestry. Proteins added to the network correspond to genes added to the classes, so that the dynamics of the two objects are intrinsically linked. Here, we first introduce a statistical model describing the joint growth of the network and the partitioning of nodes into classes, which is studied through a combined mean-field and simulation approach. We then employ this unified framework to address the specific issue of the age dependence of protein interactions, through the definition of three different node wiring/divergence schemes. Comparison with empirical data indicates that an age-dependent divergence move is necessary in order to reproduce the basic topological observables together with the age correlation between interacting nodes visible in empirical data. We also discuss the possibility of nontrivial joint partition/topology observables.Comment: 14 pages, 7 figures [accepted for publication in PRE

    The LCO/Palomar 10,000 km/sec Cluster Survey. I. Properties of the Tully-Fisher Relation

    Get PDF
    The first results from a Tully-Fisher (TF) survey of cluster galaxies are presented. The galaxies are drawn from fifteen Abell clusters that lie in the redshift range 9000-12,000 km/sec and are distributed uniformly around the celestial sky. The data set consists of R-band CCD photometry and long- slit H-alpha spectroscopy. The rotation curves (RCs) are characterized by a turnover radius (r_t) and an asymptotic velocity v_a, while the surface brightness profiles are characterized in terms of an effective exponential surface brightness I_e and a scale length r_e. The TF scatter is minimized when the rotation velocity is measured at 2.0 +/- 0.2 r_e; a significantly larger scatter results when the rotation velocity is measured at > 3 or < 1.5 scale lengths. This effect demonstrates that RCs do not have a universal form, as has been suggested by Persic, Salucci, and Stel. In contrast to previous studies, a modest but statistically significant surface-brightness dependence of the TF relation is found, log v = const + 0.28*log L + 0.14*log I_e. This indicates a stronger parallel between the TF relation and the FP relations of elliptical galaxies than has previously been recognized. Future papers in this series will consider the implications of this cluster sample for deviations from Hubble flow on 100-200 Mpc scales.Comment: 35 pages, 8 figures, uses aaspp4.sty. Submitted to ApJ. Also available at http://astro.stanford.edu/jeff

    Ground-based follow up of IRAS galaxies

    Get PDF
    Optical, near infrared, radio continuum and HI observations were undertaken of the galaxies identified with IRAS sources in a few fields roughly of the size of a sky survey plate. Results are presented from two fields at galactic latitude +27 and +43 deg over a total area of 100 sq. deg. These regions contained 115 IRAS point sources, out of which 26 were identified with stars and 81 with faint galaxies, 10 of which were difficult to recognize on the Schmidt plates. Spectroscopy was obtained with the ESO telescopes at a resolution of about 10 A. The vast majority of galaxies have low excitation spectra dominated by low ionization lines. The spectra are typical of HII region type galaxies, however of much lower excitation that other starbursts galaxies. The importance of the reddening as determined from the H alpha/H beta ratio is stressed: the visual absorption A sub v ranges from 2 to 6 magnitudes and as a consequence the corrected L sub IR/L sub B ratios are considerably reduced if those reddenings apply to the whole galaxy
    corecore