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Influence of homology and node age on the growth of protein-protein interaction networks
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Proteins participating in a protein-protein interaction network can be grouped into homology classes following
their common ancestry. Proteins added to the network correspond to genes added to the classes, so the dynamics
of the two objects are intrinsically linked. Here we first introduce a statistical model describing the joint growth
of the network and the partitioning of nodes into classes, which is studied through a combined mean-field and
simulation approach. We then employ this unified framework to address the specific issue of the age dependence
of protein interactions through the definition of three different node wiring or divergence schemes. A comparison
with empirical data indicates that an age-dependent divergence move is necessary in order to reproduce the basic
topological observables together with the age correlation between interacting nodes visible in empirical data. We
also discuss the possibility of nontrivial joint partition and topology observables.
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I. INTRODUCTION

The protein-protein interaction (PPI) network represents
the physical interactions between proteins in a cell [1]. The
topological properties of this complex network provide an
effective overview of the protein-protein interactions coded
by a genome, with implications for the analysis of signaling
and metabolic pathways [2].

In the course of evolution, a genome acquires new genes,
and thus new proteins, by different evolutionary processes
[3,4], which include gene duplication and horizontal transfers.
These processes define groups of proteins with the same com-
mon ancestor, termed homology classes. Notably, homology
classes follow well-defined quantitative laws with specific
mathematical properties [4–6], dependent only on genome
size and not on further details of a genome’s evolutionary
history [7,8].

Following gene duplications [9], proteins belonging to the
same homology class can modify their binding interfaces to
conserve ancient interactions, lose them, or evolve new ones.
This process generates new PPI network configurations, which
are subject to selective pressures of different kinds [10–12],
and allow one to construct increasingly complex biomolecular
machinery [13–15]. This mechanism of duplication divergence
has inspired a thread of graph-growth modeling work within
the physics and computational biology communities [16–22].
Generally speaking, these models generate random graph
ensembles by iteratively adding new nodes that are initially
copies of existing ones (and thus interact with all their binding
partners) and subsequently lose and/or rewire interactions by
a set of simplified prescription rules. This basic mechanism
produces graph topologies resembling empirical PPI networks
in many aspects. Comparison of model predictions and
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empirical data leads to the hypothesis that duplication diver-
gence can (at least in part) explain PPI network topologies
[21,23,24], starting from the basic observation that duplicate
proteins are often involved in similar protein-protein interac-
tions [13,15].

While it appears that gene duplication plays a role in
shaping PPI networks through evolutionary time [25], many
questions remain open. For example, it has been pointed
out that the duplication-age profiles naturally emerging from
duplication-divergence models do not resemble empirical data
and that the availability of binding interfaces could quite
reasonably impose additional relevant constraints [26–28]. Ac-
cordingly, alternative models have been proposed, where the
wiring rules account for these constraints [26]. Additionally,
according to most of these models, collapsing multiple homol-
ogous neighbors of a protein into one neighbor should make
the broad degree distribution considerably narrower, which
does not seem to be the case in empirical data [29]. Thus the
actual growth mechanisms of PPI networks is still under debate
and it is unclear how much duplication divergence versus
other constraints can account for the topology of empirical
PPI networks [25,26,30]. Additionally, duplication-divergence
models typically neglect the process of homology classes
expanding and being formed within a genome and thus cannot
describe how PPI network links are distributed among homol-
ogy classes. However, the subdivision of genes into homology
classes could constitute another relevant constraint for the PPI
network’s structure and should not be neglected a priori.

This work addresses the above issues through a model-
ing approach. We consider a (null) statistical graph-growth
model describing the joint growth of the PPI network and
homology classes structure. The output of the model is a
growing graph whose nodes are partitioned into equivalence
classes following the empirical size distributions of protein
classes. The model defines a framework for testing alter-
native mechanisms of network growth, where duplication
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divergence can have different weight during the process and
thus different consequences on the final properties of the
network. Within this setting, we ask about the ingredients
that can account for the joint growth of homology classes
and network, as well as reproducing the main empirical
observables such as degree distribution, degree correlation,
and correlation between interacting duplication-age groups.
In our analysis we find in particular that reproducing the
empirical age correlation between interacting nodes requires a
heavy bias on the duplication-divergence process, which must
correspond to additional constraints of functional or physical
origin.

II. BACKGROUND

A. Network growth by duplication divergence

Perhaps the simplest PPI network growth model incorpo-
rating the basic moves of duplication and divergence (DD)
was introduced and studied in Ref. [19]. In this model the
network grows by node duplication and subsequent deletion
of some of the duplicate links with a prescribed probability
(divergence). More precisely, at each step a randomly chosen
network node is copied, initially inheriting all the interactions
of the original node, and in a second substep the new node’s
links are deleted independently with probability 1 − σ . If
no link is left after divergence, the duplicate node itself is
deleted, so that the network remains connected throughout its
evolution. This process is completely asymmetric, meaning
that the parent node (the one chosen for duplication) does
not lose any connection, and the divergence process affects
only the daughter. More general variants have been proposed,
for instance, by relaxing the requirements of complete asym-
metry and single-gene duplication [21] or by introducing
rewiring between existing nodes (which can even become
dominant in shaping the network [29]). For simplicity, we
will restrict the discussion to the one-parameter model in the
following.

One of the main features of this model is that the described
mechanism leads to an effective preferential attachment
principle since high-degree nodes are more likely to have a
neighbor being duplicated by random choice. Specifically,
the probability of a new link being attached to a node of
degree k is proportional to k. As a consequence, the degree
distribution of the growing network develops power-law tails
∼ k−γ for large degrees [19]. Exponents in the range γ ∈ [2,3]
are realized by choices of σ ∈ (0,1/2]. Comparison with
available subsets of empirical PPI networks yields values of
the link-retention probability σ around 0.40(±0.05) for S.
cerevisiae, D. melanogaster, and H. sapiens [19]. The average
total number of links L(N ) as a function of the network
size N can also be predicted by mean-field calculations (see
Sec. IV A).

B. Homology class partitioning by the
Chinese restaurant process

Duplication plays a fundamental role in the evolution of
homology classes as well [7], as it constitutes the main drive
for class expansion, at least in eukaryotes. Equally, a genome

innovation move (for instance, by horizontal transfer) causes
the creation of new homology classes.

A simple class of partitioning processes incorporating the
basic moves of class expansion and innovation is capable
of explaining the scaling laws observed in domain-class
partitioning [8]. The paradigm of these models is the so-called
Chinese restaurant process (CRP) [6,31–33], which is the one
that will be used here. In this process, at each iteration the
genome goes from having n to n + 1 genes and either a new
class is created (with probability pnew) or a domain is added to
an existing class (with probability pold = 1 − pnew). A crucial
ingredient of the CRP is the dependence of pnew and pold on
the size of the growing proteome, whose effect is to reproduce
in the model the observed sublinear scaling of the number of
domain classes F (N ) with genome size N :

pnew = αF (N ) + θ

N + θ
, pold = N − αF (N )

N + θ
, (1)

where α ∈ (0,1) and θ � 0 are parameters of the model. (The
extreme cases α = 0,1 could be included, but we will neglect
them here for clarity.) The per-class probability of duplication
is defined as

p
(i)
old = ji − α

N + θ
, (2)

where ji is the size of the ith class. This corresponds to an
asymptotically uniform extraction, which realizes an effective
preferential attachment principle. The parameter α describes
the dominance of innovation over duplication, while θ is a
fixed size scale at which preferential attachment sets in. Mean-
field calculations, supported by simulations, show [8] that the
asymptotic behaviors of the class-size distribution f (j,N ) and
of the total number of classes F (N ) are

f (j,N ) ∼ j−(1+α), F (N ) ∼ Nα (3)

for large N and j . As a consequence, pnew and pold scale as

pnew ∼ αNα−1,
(4)

pold ∼ 1 − αNα−1.

These predictions are in good qualitative agreement with
empirical data for prokaryotic proteomes [7,8].

III. MODEL AND METHODS

A. Definition of a statistical model combining genome
partitioning and network growth

As we discussed, from a simplifying perspective, the growth
of PPI networks and genome partitioning in homology classes
are produced by essentially the same basic evolutionary moves
of innovation and duplication on the genes. For this reason, the
model proposed here is defined by abstract realizations of these
basic moves on the level of both the network and the homology
classes. This is achieved by a simple coupling between the
duplication-divergence model of network growth and the CRP
partitioning, as reviewed in Sec. II. In particular, a class
expansion move is associated with a network duplication move
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FIG. 1. (Color online) Illustration of the moves in the DDIW
model. At each step either a new class containing one node is
added and the new node is linked to one or more existing nodes
(innovation wiring, done with probability pnew) or a randomly chosen
node is duplicated inside a class and the replica’s links activated
independently with probability σ (duplication divergence, done with
probability pold). Solid circles are nodes and lines are links; large
circles are homology classes; the red node and its dashed links
are the results of a duplication-divergence move; the blue node
and its dot-dashed links are the results of an innovation-wiring
move.

and a proteome innovation move is associated with a network
move wiring the new node to the existing network. Thus
the model could be termed duplication-divergence innovation
wiring (DDIW) and describes the growth of homology classes
and the PPI network jointly.

Let pnew, p
(i)
old, and pold = ∑

i p
(i)
old be defined as in Eqs. (1)

and (2) in terms of the number of classes F (N ) and the size
of the ith class ji . The basic data structure of the model
includes the topology of the PPI network and the information
on the partitioning of its nodes (see Fig. 1). Given a proteome
or network of size N , the growth process is defined by
the following two rules acting on the classes and the graph
topology.

(I a) Duplication (classes). Choose a class i with probability
p

(i)
old and duplicate a randomly chosen target node inside

class i.
(I b) Divergence (network). Attach the new node to each of

the target’s neighbors independently with probability σ .
(II a) Innovation (classes). Otherwise (i.e., with probability

pnew), create a new node in a new class.
(II b) Wiring (network). Attach the new node to one or

more nodes in the existing network, independently of their
classes. (The additional rules describing this step are listed in
Sec. III B.)

Altogether, there are three parameters governing the
dynamics: α ∈ (0,1), θ � 0, and σ ∈ (0,1]. Notice that while
the network dynamics is dependent on the configuration of
the partitioning, the evolution of the latter is not affected by
what happens at the network level. Therefore, partitioning is
assured by definition to reproduce the CRP predictions for
all choices of the parameters. Notice that class expansion can
also occur by horizontal transfer of members of an existing
homology class [34], but we will disregard this process here.
In fact, while this mechanism is widespread in bacteria, we

found that there was no need to incorporate it explicitly in the
model in order to have a good fit with data for both networks
and homology classes.

Technically, we choose a slightly different divergence rule
from the model of Ref. [19]. In order for duplication to
always be successful (i.e., no node being left without any
links) we impose a randomly chosen link to be conserved
and divergence to be performed on the remaining ones, i.e.,
the model assumes that each duplicated node is preserved
by selection and cannot be disconnected from the existing
network. The same hypothesis holds for the original model,
but is implemented by removing the disconnected nodes.
The different implementation implies that the divergence rule
explained in Sec. II yields a degree-dependent probability of
duplication since less connected nodes are more prone to
have all their links disconnected; the rule used here instead
assigns the same probability of duplication to every node.
Despite this bias, the modified model incorporates the same
basic mechanisms as the previous one and we verified that
it leads to the same qualitative results (some features match
also quantitatively; see Sec. IV A). The main rationale behind
this choice is a simplification of the mean-field equations, as
it makes it unnecessary to estimate the number of deleted
nodes.

The initial condition will be chosen as the complete three-
graph, which is the smallest nonbipartite network. Results
do not change appreciably by starting with different small
networks (we did not study systematically the dependence of
the results from initial conditions built as large networks). We
choose to exclude self-interactions from the model as they play
a biologically distinct role in the network and they probably
deserve to be considered separately [14].

B. Model variants allowing study of the effect of different
growth mechanisms on the topology

The wiring rule is not completely specified by the defini-
tions above. Its implementation will be given in the following.
At the network level, the rules concerning the topology
can be modified without affecting the basic structure of
the model. Here we study a minimal version and consider
different variants for such rules, which allow us to address
the recently formulated problem of the age dependence of
empirical interactions [26].

We start by focusing on the wiring move. Once introduced,
the new node can be attached to a single node chosen in
the existing network by a preferential-attachment (PA) or
antipreferential-attachment (APA) principle with respect to
the old node’s degree. The former alternative describes the
tendency of new, specialized proteins to interact more likely
with old proteins that perform basic tasks, the latter reflects the
relationship between the binding probability and the available
interaction surface of existing nodes [26]. Alternatively, the
new node can be wired to a size-dependent or configuration-
dependent number l of existing nodes.

Other modifications are possible for the divergence move,
for example, by making the link-retention probability σ depend
on the current configuration of the network or on the age
difference between the two nodes that are connected by the
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(a) (b) (c)

FIG. 2. (Color online) Variants of the model. Symbols and colors
have the same meaning as in Fig. 1. (a) APA DDIW (antipreferential-
attachment innovation with a single link). During innovation, the
new node carries one new link whose target node is chosen with
probability inversely proportional to its degree. (b) EAPA DDIW
(antipreferential-attachment innovation, with multiple links). During
innovation, the new node carries a number of links proportional to the
current average degree. (c) AD DDIW (age-dependent divergence).
During divergence of a duplicated node, the probability of keeping a
link depends on the difference in age between the two nodes linked
(higher age differences corresponding to lower probabilities).

link considered by divergence. Here we consider three main
variants1 (see Fig. 2).

(A) APA DDIW. The wiring move establishes a single
new link between the new node and an existing node i

of degree ki , chosen with probability proportional to 1/ki .
This antipreferential rule reflects the growing of the binding
probability with the interaction surface available.

(B) Extensive APA (EAPA) DDIW. The wiring move
attaches the new node to l = [γ 〈k〉] existing nodes, chosen
with antipreferential attachment; [γ 〈k〉] is the closest integer
to a fraction γ ∈ (0,1) of the mean degree in the present
configuration.

(C) Age-dependent (AD) DDIW. The wiring move is the
same as for variant A. The divergence step implements a kind
of preferential attachment that takes into account the node’s
age in the following way. Let ai be the age of node i, i.e., the
number of iterations the process underwent since the node was
born. A link to node i inherited from the target node is kept with
probability 1 if ai < σN , where N is the size of the network,
and with probability 0 otherwise. This rule implements non-
neutral selective pressure towards maintaining ancient well-
established basic cellular machinery.

C. Empirical data sets and data analysis methods

Data for protein binding is obtained from the most recent
(October 2011) Database of Interacting Proteins (DIP) [35].
We filter out self-interactions between single proteins and
interactions between proteins expressed by different genomes;
different strains are considered as different organisms. More-
over, we exclude all virus data and all networks with less than
10 nodes. We end up with 1 archaeon, 14 bacteria, and 7
eukaryotes; a list of all organisms considered in the study of

1We have also studied the PA DDIW variant, where the new node
is wired to the old network according to a preferential-attachment
principle, but the results did not show a significant difference from
the APA DDIW variant described here and thus will not be reported.

TABLE I. Genomes from DIP [35] and corresponding values of
the number of nodes N and number of links L. Note that the bacteria
with small number of nodes are heavily undersampled in the data set,
so that the number of effectively significant points is low (see Sec. V).

Organism No. of nodes No. of links

archaea
Sulfolobus solfataricus 14 9

prokaryotes
Arabidopsis thaliana 136 153
Bos taurus 30 23
Caenorhabditis elegans 2647 3985
Chlamydomonas reinhardtii 14 17
Danio rerio 13 9
Drosophila melanogaster 7500 22 737
Gallus gallus 11 6
Homo sapiens 1850 2370
Mus musculus 524 457
Pisum sativum 10 12
Rattus norvegicus 147 112
Saccharomyces cerevisiae 4998 21 881
Schizosaccharomyces pombe 80 160
Xenopus laevis 20 14

bacteria
Bacillus subtilis 34 24
Caulobacter crescentus 18 11
Escherichia coli 2640 11 545
Helicobacter pylori 700 1354
Mycobacterium tuberculosis 13 9
Synechocystis sp. 32 29
Xanthomonas campestris 11 10

network topology is presented in Table I, together with the
observed number of proteins N and interactions L. Notice that
the networks we can construct from DIP include only subsets of
the full proteomes. For example, the C. elegans network in our
data set is smaller than that of S. cerveisiae, despite its genome
being much larger, possibly creating significant undersampling
problems in the data. See Sec. V for a discussion of this issue.

Homology classes are built starting from the SUPERFAM-
ILY database for domain assignment [36]. We reconstruct the
domain architectures as ordered lists of domains and gaps; a
gap is defined as a subsequence of 100 or more AA not scored
for domain [37]. Two proteins are in the same homology
class if their architectures are exactly matching. We also
tested a more relaxed criterion (allowing for repetitions of
domain architectures) and obtained the same results as those
presented in the following for the stricter criterion. Moreover,
we also considered data restricted to longest transcripts in
eukaryotes, finding no difference in the scaling (we remark that
longest-transcript data in the data set are very incomplete, so
we will not include them in the forthcoming analysis). We filter
out genomes with more than 19 000 assignments; altogether,
we work with data for 1384 organisms—87 archaea, 1077
bacteria, and 220 eukaryotes—for the homology classes, but
only 22 networks with sufficiently large sampling of the
interactions.

Beside network topology and homology classes, we are
interested in evolutionary ages of proteins. For the proteome
of S. cerevisae, we use data from Wapinski et al. [38], where
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duplication events for a number of genes of S. cerevisiae are
divided into ten classes, labeled A, B, C, D, E, WGD, G, H,
I, and J, depending on when in the evolutionary history of
Ascomycota they occurred (class A being the more recent).
We further group these classes into four superclasses (labeled
G1–4), keeping the whole-genome duplication (WGD) alone,
due to the abundance of its elements:

G1 = I + J, G2 = G + H,

G3 = WGD, G4 = A + B + C + D + E.

By this procedure, we assign 210 genes to age group G1, 85
to G2, 691 to G3 (WGD), and 91 to G4. The age of a protein
is defined as the superclass of the oldest duplication event in
which it is reported to be involved. It should be noted that
the WGD has a different phenomenology than the single-gene
duplication events considered here; we do not exclude it from
our data, but its modelization is beyond the scope of the
present work (see Ref. [22]). In order to evaluate the history
dependence of protein interactions, we use the interaction
density Dm,n between two age groups m and n as an indicator
of age correlation. It is defined, following Ref. [26], as

Dm,n = log2

[
Lm,n

Em,n

N (N − 1)

2L

]
, (5)

where Lm,n is the number of links between the age groups m

and n and Em,n is the number of possible links between nodes
of the two groups, which depends on only the number of nodes
in m and n. The average interaction density gradient, defined
as [26]

�D =
4∑

n=2

∑
m<n

(Dm+1,n − Dm,n), (6)

measures the overall correlation present between the ages of
proteins; a positive value indicates that newer nodes preferen-
tially link with newer nodes. We will use the sign of �D as
a marker of correlation or anticorrelation between ages. Fits
of data against nonlinear analytic expressions are performed
by minimization of the squared residuals through the standard
Levenberg-Marquardt method and are systematically checked
for stableness under the introduction of a cutoff on small-size
data.

IV. RESULTS

We ask under which conditions the model or its variants
fulfill the following requirements. First, it should qualitatively
reproduce the features of both the duplication-divergence and
CRP “pure” models. Second, it describes the enriched data
structure of network plus homology classes and it should
predict the behavior of joint topology-partition observables,
including the history dependence of interactions.

All variants of the DDIW model reproduce the same
homology-class scaling as the pure CRP essentially because
the class partitioning is not affected by the network dynam-
ics by definition. A simple scaling argument suggests that
the duplication-divergence predictions are expected to be
recovered for large N since the scaling of pnew and pold

[Eq. (4)] shows that duplication becomes dominant in this
regime. Therefore, the model is expected to behave as pure

duplication divergence in the large-N limit; it remains to clar-
ify what happens at intermediate values of N . In the following
sections we address some of these questions; the large-N
behavior is clarified by mean-field techniques, while finite
values of N are studied by means of numerical simulations.
The analysis of how the partitioning into homology classes
correlates with the network structure will be briefly addressed
in Sec. V, but its systematic study will be left to future
work.

A. Mean-field theory accurately predicts scaling
of the total number of links

Mean-field calculations give reliable estimates for the
behavior of the duplication-divergence network growth model
and for the class-expansion innovation model separately
[8,19], therefore it makes sense to apply the same procedure to
the joint model. The mean-field approach essentially consists
in neglecting the fluctuations due to the statistical nature of
the models and writing “macroscopic” differential equations
for the average quantities, which can be treated analytically.
In this section we will use this tool to study the average total
number of links L(N ) as a function of the number of nodes
N for the variants of the joint-evolution model described in
the preceding section. In principle, other characteristics of the
network may be accessible through mean-field calculations,
such as the degree distribution, but we will not treat them
here.

For the duplication-divergence model alone (in the variant
defined in Sec. III A), the simplification we introduced allows
us to write a slightly more general expression for L(N ) than
that obtained in Ref. [19]. Let Nk be the average number of
nodes with k links in a network of size N (the average is
intended on all realizations of the stochastic process up to
size N ). Clearly,

∑
k

Nk = N (7)

and
∑

k

kNk = 2L(N ), (8)

where the sums are extended to all possible values of the degree
k (say, from 1 to ∞); L(N ) varies at each duplication following
the mean-field equation

�L(N ) �
∑

k

Nk

N
[1 + (k − 1)σ ], (9)

where �L(N ) ≡ L(N + 1) − L(N ). The summand takes into
account the duplication of a node of degree k, which is
performed with probability Nk/N . The term in square brackets
reflects the fact that by definition at least one of the links is
maintained, while the other k − 1 links are kept independently
with probability σ . Performing the sum by applying identities
(7) and (8) yields

�L(N ) � (1 − σ ) + 2σ
L(N )

N
. (10)
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FIG. 3. (Color online) Average total number of links L(N ) as a
function of network size for the pure duplication-divergence model.
Solid lines show the mean-field prediction, while symbols are the
results of numerical simulations (100 realizations); error bars are
smaller than symbols. Triangles correspond to σ = 0.2, diamonds to
0.4, squares to 0.6, and circles to 0.8.

This can be approximated by the (large-N ) differential
equation

dL

dN
� (1 − σ ) + 2σ

L

N
. (11)

Solving this equation with a formal initial condition L(N0) =
L0 gives the solution

L(N ) � 1 − σ

1 − 2σ
N +

(
L0 − 1 − σ

1 − 2σ
N0

)(
N

N0

)2σ

. (12)

In the following we will fix the initial condition to the complete
three-graph [L(3) = 3] in order to avoid the proliferation of
irrelevant parameters. The presence of two regimes is apparent,
where the first or the second term dominates, corresponding
to σ < 1/2 and σ > 1/2, respectively. Notice the alternating-
sign pattern of the corrections to scaling, which can cause the
observation of a small-size effective exponent higher than both
1 and 2σ (see Sec. IV B). By taking the limit σ → 1/2 one
has L(N ) = 1/2(N ln N ) + O(N ), thus recovering the three
different regimes of the original DD model [19]. Figure 3
shows that mean-field predictions correctly reproduce the
results of simulations, even for fairly small values of N ; small
deviations from mean field appear only for large values of σ ,
which are not very relevant empirically, as the link density
would be too high compared to empirical data.

We now consider the different variants of the joint DDIW
model. The increase in the total number of links at each
step is given by either l (if the innovation move is chosen)
or the same sum as in Eq. (9) (if the duplication move is
chosen). We will not consider variant AD DDIW since in
this case solving the mean-field equation for the number of
links requires knowledge of the node-age distribution in the
network. Thus, for the first two variants we have

�L(N ) � pnewl(N ) + pold

∑
k

Nk

N
[1 + (k − 1)σ ],

where l(N ) is the average of l over realizations of the process
up to size N . By plugging in the asymptotic forms (4) and

taking the continuum approximation as in Eq. (10) we obtain

dL

dN
� αNα−1l(N ) + (1 − αNα−1)

(
1 − σ + 2σ

L

N

)
, (13)

which has to be solved separately for the two cases l(N ) =
1 (APA DDIW) and l(N ) = γ 2L/N (EAPA DDIW). The
solution is presented in some detail in the Appendix; we
concentrate here on the asymptotic behavior. Up to exponential
corrections of the form exp(x−η) with η > 0, the number of
links scales as

L(N ) ∼ aN2σ + bN (14)

for the APA DDIW variant and as

L(N ) ∼ cN2σ + dNα + eN (15)

for the EAPA DDIW variant; a and b are functions of σ and α,
while c, d, and e are functions of σ , α, and γ . The exponential
corrections are proportional to exp(pnew), which indicates the
influence the partitioning process has on the early stages of
the growth process. Figure 4 shows a comparison between
mean-field results and numerical simulations. Deviations are
apparent for (σ,α) = (0.6,0.6) and (0.2,0.6) in the EAPA
DDIW variant, but theoretical predictions are accurate for
other values and the APA DDIW variant. The structure of
the power-law corrections to scaling is similar to that of the
pure DD model and as long as α < 2σ (which is the case for
the universal fits to empirical data presented in Sec. IV B) the
asymptotic behavior depends only on σ , up to the subleading
order. This suggests that the scaling behavior of the hybrid
DDIW model is to a certain extent robust with respect to the
details of the innovation dynamics.

Concerning the scaling of the number of links in the AD
DDIW variant (Fig. 4), note that in this case the definition
of σ does not allow one to interpret this parameter as the
average fraction of links retained after node duplication. This
is due to a nontrivial correlation between node age and node
degree, which is not straightforward to include in the mean-
field calculation. Nevertheless, numerical simulations indicate
that the asymptotic behavior of L(N ) derived for the APA
DDIW variant also holds for the AD DDIW variant, up to a
rescaling of σ . This can be seen in Fig. 4, where the mean-
field predictions are compared with numerical results for the
rescaled values σ̂ .

B. Scaling of the number of links and classes as functions
of genome size is reproduced by universal parameters

independent of the model variant

Having established that the scaling for the number of links
is captured by simple mean-field estimates and indicates well-
defined parameter regimes, we constrain the parameters by
comparing them to the available empirical data. Specifically,
we fix the three parameters α, θ , and σ by fitting the mean-
field expressions against data for homology classes and PPI
networks.

The calculations presented in the preceding section and
in the Appendix are not easily extendable to finite values
of θ ; they are valid in the asymptotic limit or when θ = 0.
Nonetheless, a corrected expression of F (N ) for the case θ > 0
and F (1) = 1 can be obtained (see Ref. [8]) and it is the one
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(a)

(c)

APA DDIW EAPA DDIW

AD DDIW

(b)

FIG. 4. (Color online) Scaling of the average total number of links L(N ) as a function of network size, captured by simple mean-field
estimates for all model variants. Solid curves show the mean-field prediction, while symbols are numerical results averaged over 100 realizations.
(a) APA DDIW (antipreferential attachment innovation move) variant: The mean-field estimate agrees with the simulation results. (b) EAPA
DDIW (antipreferential attachment innovation move with an extensive number of links) variant: Deviations are present for the larger values of
α, but there is good agreement between mean-field estimate and simulations. (c) AD DDIW (age-dependent duplication divergence): In this
case, the mean-field estimates with the same slope as in (a) are valid for simulations with a rescaled value σ̂ of the parameter σ , related to link
retention (note that σ is not the link retention probability in this variant; see the text).

we use here to fit the number of homology classes as a function
of genome size,

αF (N ) + θ ∼ α + θ

(1 + θα)
(N + θ )α. (16)

We perform the fits on the empirical data set for homology
classes defined by protein domain architectures, described in
Sec. III C. By taking into account all data, we obtain α �
0.42 and θ � 124. Estimates change slightly by imposing a
cutoff, since after N ≈ 1000 data show a clearer power law.
By including only data with N � 1000 we obtain α � 0.43
and θ � 118, which are compatible with the results obtained
from the whole available range of genome sizes (without any
cutoff). We will use the following estimates for all forthcoming
computations:

α = 0.43, θ = 121.

The theoretical mean-field curve for F (N ) is plotted against
data in Fig. 5(a).

Turning to the network data and the fit for L(N ), a
non-null value of θ is not expected to modify the asymptotic
behavior, but to act only on the prefactors. Therefore we use
the mean-field L(N ), even if the homology-class fits give a
non-negligible value of θ . Note that the same scaling seems to
apply to the prokaryotic genomes as well, despite their network
dynamics not being dominated by duplication divergence;

indeed, homology classes prevalently expand by horizontal
gene transfers [34]. A more precise analysis of this behavior
can only be carried out with more reliable and abundant data;
here we use both prokaryotic and eukaryotic data, as described
in Sec. III C. Fits against the mean-field predictions for L(N )
given in the Appendix (with α = 0.43 fixed) yield

σ = 0.457(10)

for the APA DDIW variant and

σ = 0.421(9) (γ = 1),

σ = 0.460(10) (γ → 0)

for the EAPA DDIW variant; values of γ between 0 and 1 give
estimates between the two extremes. In contrast, a fit against
the pure DD prediction (12) gives

σ = 0.446(10).

We tested the stability of the foregoing fits by increasing the
cutoff on the network size N from 10 to 100. The values do
not change appreciably; errors increase by approximately 50%.
A comparison between DIP data [35] and simulations of the
AD DDIW variant, whose exact behavior cannot be calculated
via mean-field derivation, gives approximately σ � 0.5, which
corresponds to an effective link-retention probability around
0.4 [see Fig. 4(c)].

041919-7



BOTTINELLI, BASSETTI, LAGOMARSINO, AND GHERARDI PHYSICAL REVIEW E 86, 041919 (2012)

(a)

(b)

AD DDIW
APA DDIW
EAPA DDIW

FIG. 5. (Color online) Universal behavior for the number of
homology classes and the number of network links. (a) Number
of homology classes versus total number of proteins. Symbols are
data from the SUPERFAMILY database [36] and the line is a
two-parameter (α,θ ) fit from the model [Eq. (16)]. (b) Number of
links versus size of sampled network. Symbols are data from the
DIP dataset [35] and lines are the results of simulations for the
three variants of the model, with all parameters fixed by fits. Darker
triangles point out some examples of well-known genomes. Note that
many networks (e.g., B. subtilis and all the triangles of smaller size)
are heavily undersampled in the data set (see Sec. V).

Figure 5(b) shows numerical results for the three variants
of our model (with α, θ , and σ fixed by the above fits)
superimposed on the data from DIP. The initial network
was chosen as the complete three-graph (see Secs. III A
and IV A). Finite-size effects can be seen, especially for
the EAPA DDIW variant, but the trend is consistent. The
results for all parameters are compatible with each other,
therefore we regard this as a model variant-independent fit:
The two parameters α and σ can then be seen as universal
(model variant-independent) quantities governing the scaling
laws observed in genomes. Very similar values of σ (≈ 0.4)
were also found in Ref. [19] with a more detailed analysis
of the degree distribution of PPI networks and comparison to
the model. Note that a simple fit of the form L(N ) ∼ N2σ

on the empirical data would yield σ = 0.52, i.e., it would
suggest a crossover regime. According to our analysis, such
a higher exponent appears instead to be an artifact due to the
cooperation of two terms (N2σ and N ) with smaller exponents
but with alternating signs.

Note that in principle the mean-field derivation is valid in
the large-N limit. Figure 5(b) shows that differences in the fit

results can be noticed for small cutoffs. We chose a low cutoff
to genomes with less than 10 nodes in order to show this. It
must be noted, however, that many small networks are actually
quite large in reality, but extremely undersampled in the data
set.

C. Comparison with the empirical network of yeast reveals
the necessity of age-dependent divergence

We now turn to the question of the topological properties
and the age dependence of interactions. In order to perform
a qualitative comparison between properties of an empirical
PPI network and the results of computer simulations for the
three model variants described above we choose the case
of baker yeast S. cerevisiae, where reliable estimates of
the age of nodes can be obtained from the literature (see
Sec. III C). As pointed out in Refs. [26,39], while standard
duplication-divergence network growth models well reproduce
topological features of protein-protein interaction graphs, such
as degree distribution and clustering coefficient, they fail
to capture the empirically observed correlation between the
evolutionary ages of interacting proteins. As they discuss,
this might be obtained from an antipreferential-attachment
principle if it becomes a dominant mechanism in defining
the network topology.

In order to monitor the topology and history dependence of
interactions we considered the following observables. (i) We
measured two relevant topology-related quantities: the degree
distribution nk , defined as the fraction of nodes of degree k,
and a measure of the degree-degree correlation, called dk ,
defined as the average over all nodes of degree k of the mean
degree of their neighbors. (ii) To check for age-age correlations
we employed the interaction density Dm,n and the interaction
density gradient �D introduced in Sec. III C.

The behavior of the observables considered is shown in
Fig. 6 for both the empirical PPI network of yeast and
numerical simulations of the DDIW model variants. The model
parameters are those obtained in Sec. IV B. As we pointed out
before, results for the age class corresponding to the WGD
in Fig. 6 should be taken carefully since homologs in that
class were duplicated in a phenomenologically different event.
For assessing how successful each variant is in reproducing
the degree distribution and the degree correlation we adopt a
qualitative criterion. Specifically, we consider a monotonically
decreasing behavior of the two topological quantities to be
compatible with empirical data since this is the behavior
observed in yeast. Concerning node-age correlations, we
measure the interaction density gradient and verify whether
it is positive or negative; the reference data for yeast give a
positive �D. The whole comparison is carried out in the same
spirit as in Ref. [26].

The APA DDIW variant successfully reproduces the em-
pirical degree correlation and degree distribution, but not the
pattern of correlation between age groups (�D < 0). In this
model the innovation move gives a negligible contribution to
network topology because the corresponding number of links
is always subdominant. In fact, we verified that changing the
antipreferential-attachment innovation move into preferential
attachment has little or no effect on the main topological
observables. As expected from this argument, this model
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APA DDIW EAPA DDIW AD DDIW

FIG. 6. (Color online) Qualitative comparison between model variants and empirical data. The average degree of nearest neighbors (top
row), the degree distribution (middle row), and the interaction density [Eq. (5)] between age groups (bottom row) are measured for S. cerevisiae
(left panel) and for simulations of the three variants of the DDIW model (right panel). The APA DDIW variant successfully reproduces the
empirical degree correlation and degree distribution, but the wiring mechanism does not provide enough links to reproduce the empirical age
correlation; the EAPA DDIW variant correctly shows correlation between protein ages, due to the increased number of links introduced by
innovation, but it strongly distorts the topological features of the network; the AD DDIW variant effectively reproduces both topological and
age-correlation features observed in the empirical network.

generates a network where new nodes are preferentially
connected to old nodes, contrary to the pattern that emerges
in yeast and equivalently to a pure duplication-divergence
network growth. However, the antipreferential mechanism is
capable of generating a qualitatively correct age correlation
if it can build a large number of links, i.e., if the EAPA
DDIW variant is considered. In this case, due to the progressive
increasing in the number of links attached in the innovation
move, one obtains the correct empirical age dependence
(�D > 0), but at the expense of completely disrupting the
topology. For this variant, a scatterplot of the degree-degree
correlation (not shown here) presents a slight bimodality in a
small range of degrees; nonetheless, we chose to group the data
in histograms in order to highlight how the overall behavior is
different from the empirical one. Finally, the age-dependent
DDIW variant is able to account for both the topological
features and the age correlation.

As mentioned above, we have also tested the robustness of
the results under further modifications of the innovation move.
No relevant change in the results for the APA DDIW variant
is detectable by applying a preferential-attachment principle
instead of an antipreferential one nor by attaching the new node
to a fixed number (greater than 1) of existing nodes. Moreover,
the EAPA DDIW variant yields very similar results for all
values of γ in (0,1] and therefore the actual value of this

parameter should not be regarded as an essential quantity.
As far as the age-preference is concerned, we remark that
an antipreferential wiring move gives the clearest results, but
age-age correlations can be seen also in networks obtained by
means of preferential-attachment wiring, as long as this does
not dominate over the duplication-divergence move.

V. DISCUSSION AND CONCLUSION

The model presented here can be seen as the prototype of
a rather general modeling framework where a graph grows by
the addition of nodes and links within the constraint of a class
structure. Indeed, new nodes are added to a new class or to an
existing one with prescribed probabilities, their wiring rules
being different in the two cases. Here we explored variants
where nodes added together with a new class are wired to
the old network according to an antipreferential-attachment
principle, while nodes introduced into an existing class follow
a duplication-divergence prescription. The goals of our work
were twofold. First, we studied the joint evolution of the
network by duplication and divergence and by class expansion
and innovation. Second, as a case study and proof-of-principle
application, we applied the unified framework to the study
of age dependence, where some interesting questions are
open. The two objectives are connected, as the scenarios we
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explored would be ill defined outside this unified framework.
For example, assigning antipreferential attachment to the
innovation move requires one to be able to distinguish it
from a duplication move, i.e., to separate new families from
existing ones. To carry out both objectives, we stayed as close
as possible to empirical data.

We considered probabilities of the addition of new nodes
that vanish with N → ∞ in order to reproduce the observed
empirical scaling of homology classes [7]. As a consequence,
unless it is imposed that new nodes (i.e., new nodes belonging
to a new homology class) carry an extensive number of links,
the wiring rule for innovation is of secondary importance with
respect to the duplication-divergence move in determining the
asymptotic features of the resulting graph ensemble. This is
in accordance with the empirical observations indicating that
duplication divergence is relevant in shaping the appearance
of the PPI network [11,12,15,24]. The finite-size behavior,
nonetheless, is sensitive to the innovation process, suggesting
the existence of nontrivial features of the topology related to
the dynamics of homology classes.

Following these indications, the framework considered
here can in principle make more detailed predictions for
observables that involve network and homology classes jointly.
We analyzed the behavior of one such observable, namely, the
correlation between the total number of links originating from
a given class and the size of the class. While we find good
agreement between data for the E. coli PPI network and simu-
lations of the DDIW model (at least for the two nonextensive
variants), they both agree with the null expectation that this
scaling is linear (see Fig. 7). Indeed, in the random case, i.e.,
when the members of homology classes (of prescribed sizes)
are chosen randomly among network nodes, the total degree
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FIG. 7. (Color online) Linear scaling of the correlation between
the total number of links originating from a given class and the size
of the class: scatterplot of class degree (sum of the degrees of all
nodes in a class) versus class size (number of nodes). Red pluses
(+) represent results from the typical realization of the DDIW model
with N = 2640 nodes as in the PPI network of E. coli (for the APA
DDIW variant; AD DDIW yields a similar plot); green crosses (×) are
obtained from the same DDIW realization by randomly permuting
nodes between classes; blue diamonds are obtained by combining
data for the network structure and homology classes for E. coli; the
dashed line is the prediction for the average of the total class degree
in the randomized case, i.e., the mean node degree times the class
size (here 〈k〉 = 2.3).

of a class will be, on average, equal to the number of nodes in
the class times the mean node degree. Thus we were unable to
find such an effect in the data available to us.

Despite the relation between class size and total degree
not being discriminating, the DDIW model does generate
nontrivial correlations from the joint evolution of the network
and the partitioning into classes. The fact that currently
available empirical data do not allow one to discriminate
should not discourage the analysis of joint models until
more abundant or precise data will be available. To give
an example, let us focus on the number FN (1,1) of classes
containing a single node with degree 1 in a network of size
N . In the null model where nodes are shuffled randomly
between classes (in a single realization of the network), this
number is distributed following a hypergeometric distribution
centered in 〈FN (1,1)〉 = MC/N , where M is the number of
degree-one nodes in the whole network and C is the number of
size-one classes. Simulations of the DDIW model for several
realizations (in the two nonextensive variants) consistently
yield values of FN (1,1) that lie several standard deviations
above the mean of the null-model distribution. We have
measured M,C,N , and j for the E. coli PPI network, using
both Ensembl [40] and SUPERFAMILY [36] homology data;
the actual value of FN (1,1) is larger than the null average, in
both data sets, by approximately 4–6 standard deviations, thus
confirming the qualitative non-null prediction of the model.
Future work could be directed towards a more detailed study
of joint laws such as this one. As an example, the full numbers
FN (i,k) of classes containing i nodes of total degree k are a
class of interesting observables that are probably accessible by
standard mean-field techniques.

The model variants can be approached by analytical
estimates and direct simulation and matched with empirical
data on both homology classes and PPI networks. This fitting
procedure constitutes a proof of principle of the general
applicability of the framework defined here. It also allows
one to fix the few parameters of the model and produces
well-defined comparisons of the model’s predictions with data.

In order to explicitly carry out this comparison in a
specific case study we considered the problem of reproducing
the empirical age dependence of PPI network interactions
through different variants of the model. We tested the pre-
dictions obtained against data from yeast, where both PPI
network and gene duplications are well characterized and
the duplication age of individual proteins is also available.
We were able to show that the empirical duplication-age
patterns of interacting protein pairs can be reproduced in
two alternative ways: first, by an antipreferential-attachment
prescription in the innovation move, associated with a heavy
(extensive) contribution of this move to the number of links,
and second, by inserting a strong negative bias towards forming
protein-protein interactions with old nodes. However, the
first choice leads to networks whose degree distribution and
neighbor degree correlations do not resemble the empirical
ones. Conversely, the bias imposed in the second case could be
rationalized by biological arguments concerning the available
binding interfaces (older proteins are more likely fully engaged
with the interactions they participate in) and the conservation
of basic biological functions (new interactions interfering with
older ones could be detrimental). Thus an age-dependent
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duplication-divergence move seems more satisfactory. Once
established that such an age dependence in the divergence
process is in qualitative agreement with data, one can ask
whether the same features can be reproduced without con-
sidering the full partition and topology dynamics. We have
performed additional numerical simulations and found that the
qualitative patterns in Fig. 6 can be reproduced also by a simple
duplication-divergence model with age bias and no innovation
nor class dynamics. This is not in contrast with the importance
of considering the problem in the more general framework
since, in principle, as we have explained in the preceding
section, other mechanisms, related to the innovation or wiring
move, could have been responsible for the age-correlation
patterns observed.

Overall, our analysis tends to support the hypothesis
that duplication divergence alone does not account for the
observed history dependence of the existing protein-protein
interactions [26]. Note, however, that in the age-dependent
DDIW model, as well as in the previous models of this kind,
duplication divergence turns out to be a necessary ingredient
in shaping biologically resembling degree distributions and
degree correlations of nearest neighbors. This suggests that the
mechanism of duplication and divergence might play a role in
determining PPI network topologies [25]. Conversely, in the
previous model of Kim and Marcotte, the age dependence is
associated with model moves that, roughly speaking, are more
similar to an antipreferential-attachment innovation move than
to a duplication-divergence one [26]. We should also remark
that the models we have explored here are based on totally
asymmetric duplication divergence. We cannot exclude that
the age-correlation patterns could be biased also by using
general duplication-divergence schemes [21], where different
values of σ are assigned to the connections between pairs of
new nodes with respect to new-old node pairs. In this case,
the introduction of an additional parameter could produce the
age-correlation kernel in a natural way.

One important caveat is that the PPI data available to us are
affected by strong subsampling problems since presumably
for most organisms only a fraction of the protein-protein
interactions are available in the DIP database [35]. Having
small samples of large networks makes it problematic to
estimate model parameters. For example, it is likely that
the exponent for L(N ) is overestimated. We performed a
numerical test by growing networks up to size N (and a
fluctuating number of links L′) and subsampling them to a
fixed number of links L. In general one obtains networks with
many more nodes N ′ compared to networks that are grown
with the model at L′ edges and not subsampled. For parameter
values that match the available data, this error could be as large
as 100%; in C. elegans, for instance, for which approximately
4000 interactions are known involving around 2600 proteins
(out of approximately 20 000 genes), we obtain N ′ ≈ 5100. On
the positive side, restricting the parameter-matching analysis
(Fig. 5) of the model to the few highly sampled genomes does
not change our results. Nevertheless, it seems quite possible
that a larger cross-genomic knowledge of PPI networks could
change the quantitative picture emerging from these data and
possibly also the qualitative one.

To conclude, despite the current open questions, we believe
that this general framework might be important in posing

questions about the growth of PPI networks as the network
structure is intimately related to the partitioning in homology
classes and, quite importantly, to the class of biological
functions that a specific homology class can perform [41].
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APPENDIX: MEAN-FIELD CALCULATION OF L(N)

We give here the solutions to the mean-field equation (13).
Let us call LA(N ) the solution with the choice l(N ) = 1
(APA DDIW variant) and LB(N ) the solution with the choice
l(N ) = γ 2L/N (EAPA DDIW variant). For both choices
Eq. (13) is a standard first-order ordinary differential equation,
whose solution can be readily computed with the help of
MATHEMATICA. One obtains

LA(N ) = N2σ e2σPα (N)

{
const + 1

2
N1−2σ e−2σPα (N)

− 1

2(1 − α)
N1−2σ [2σPα(N )](1−2σ )(1−α)

×�

(
−1 − 2σ

1 − α
,2σPα(N )

)}
, (A1)

where Pα(N ) is defined as

Pα(N ) = α

1 − α
Nα−1 (A2)

[which is proportional to the asymptotic form of the innovation
probability; see Eq. (4)] and �(a,z) is the upper incomplete
Gamma function

�(a,z) =
∫ ∞

z

ta−1etdt. (A3)

The constant term depends only on α, σ , and the initial
condition L(N0) = L0. Note that Pα(N ) → 0 when N → ∞
since α ∈ (0,1). By substituting the asymptotic expansion for
the incomplete Gamma function to leading order around z = 0,

�(a,z) ∼ �(a) − za

a
, (A4)

into Eq. (A1) one sees that the first term in large curly brackets
gives a contribution proportional to N2σ to the asymptotic
form, while the second and third terms have a linear behavior
proportional to N , thus recovering expression (14).

An expression similar to but more complicated than
Eq. (A1) is found for LB(N ). We do not quote it here because
it is very large without being particularly instructive; the same
analysis gives the corresponding asymptotic behavior (15).
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