16 research outputs found

    A central cavity within the holo-translocon suggests a mechanism for membrane protein insertion.

    Get PDF
    The conserved SecYEG protein-conducting channel and the accessory proteins SecDF-YajC and YidC constitute the bacterial holo-translocon (HTL), capable of protein-secretion and membrane-protein insertion. By employing an integrative approach combining small-angle neutron scattering (SANS), low-resolution electron microscopy and biophysical analyses we determined the arrangement of the proteins and lipids within the super-complex. The results guided the placement of X-ray structures of individual HTL components and allowed the proposal of a model of the functional translocon. Their arrangement around a central lipid-containing pool conveys an unexpected, but compelling mechanism for membrane-protein insertion. The periplasmic domains of YidC and SecD are poised at the protein-channel exit-site of SecY, presumably to aid the emergence of translocating polypeptides. The SecY lateral gate for membrane-insertion is adjacent to the membrane 'insertase' YidC. Absolute-scale SANS employing a novel contrast-match-point analysis revealed a dynamic complex adopting open and compact configurations around an adaptable central lipid-filled chamber, wherein polytopic membrane-proteins could fold, sheltered from aggregation and proteolysis

    Architecture of the SecYEG-DF-YajC-YidC Holotranslocon

    No full text
    L’adressage des protĂ©ines vers leur correct emplacement est crucial pour la cellule. L’information d’adressage est fournie sous la forme d’une sĂ©quence signale par le polypeptide lui-mĂȘme. Chez Escherichia coli, les protĂ©ines membranaires sont adressĂ©es vers la membrane de façon co-traductionnelle via la particule de reconnaissance du signal (SRP) tandis que les protĂ©ines sĂ©crĂ©tĂ©es suivent la voie de translocation post-traductionnelle caractĂ©risĂ©e par les protĂ©ines SecB et SecA qui sont impliquĂ©es dans le processus d’adressage. Ces deux voies convergent au niveau du canal de translocation des protĂ©ines SecYEG. Chose intĂ©ressante, SecYEG a la possibilitĂ© de recruter les domaines accessoires SecDF-YajC et YidC et ainsi former le complexe holotranslocon (HTL). La recherche actuelle sur la translocation des protĂ©ines se concentre principalement sur la structure et fonction du canal de translocation des protĂ©ines hĂ©tĂ©rotrimĂ©rique bactĂ©rien SecYEG qui est conservĂ©. Peu de choses sont connues concernant la structure et la fonction des composants additionnels SecD, SecF et YidC formant la machinerie de translocation et qui sont essentiels pour E. coli. Ceci est dĂ» principalement Ă  l’absence d’un complexe holotranslocon SecYEG-DF-YidC (HTL) recombinant purifiĂ©. En consĂ©quence, une analyse biophysique et structurale minutieuse de ce large complexe transmembranaire composĂ© de sept sous-unitĂ©s est toujours en suspens.En utilisant un nouveau systĂšme d’expression pour des complexes multi-protĂ©iques basĂ© sur la recombinaison de vecteur chez E. coli, nous avons avec succĂšs surproduit l’holotranslocon SecYEG-DF-YajC-YidC et son sous-complexe composĂ© de SecDF-YajC-YidC (DFYY). Nous avons Ă©galement rĂ©ussi Ă  solubiliser avec l’aide de dĂ©tergents et Ă  purifier ces complexes. L’holotranslocon purifiĂ© a ensuite Ă©tĂ© utilisĂ© afin de caractĂ©riser de façon biochimique le complexe et de dĂ©terminer la structure de l’holotranslocon. PremiĂšrement, le complexe HTL semble ĂȘtre plus compĂ©tent pour l’insertion co-traductionnelle des protĂ©ines membranaires comparĂ© Ă  SecYEG isolĂ©. Concernant la translocation post-traductionnelle d’une protĂ©ine de la membrane externe Ă  tonneau ÎČ, dĂ©pendante de la prĂ©sence de SecA et d’ATP, l’influence de la force proton motrice sur ce processus est augmentĂ©e. De plus, la prĂ©sence du domaine accessoire semble amĂ©liorer l’attachement du ribosome au translocon. En utilisant des cellules dĂ©plĂ©tĂ©es de SecDF et YajC, nous avons identifiĂ© des substrats possibles de HTL qui doivent maintenant ĂȘtre confirmĂ©s et analysĂ©s maniĂšre plus approfondie par des expĂ©riences de translocation in vitro.Par la suite, nous avons rĂ©solu la structure de l’holotranslocon par cryo-microscopie Ă©lectronique (ME) et analyse des particules isolĂ©es. En comparant les reconstructions de ME8du complexe HTL avec le sous-complexe de domaine accessoire SecDF-YajC-YidC, nous avons Ă©tĂ© capable de localisĂ© le complexe principal SecYEG. La structure de HTL par cryo-ME a pu ĂȘtre affinĂ©e jusqu’à une rĂ©solution de 10.5 Å. Cette structure permet le placement des structures Ă  haute rĂ©solution disponibles de SecYEG, SecDF et YidC afin de gĂ©nĂ©rer un modĂšle quasi-atomique de l’holotranslocon. Les jeu de donnĂ©es ainsi obtenus sont volumineux et souffrent d’un taux Ă©levĂ© de « faux positifs », probablement dĂ» Ă  des rĂ©actions de rĂ©ticulation inter-complexe. C’est pourquoi ils nĂ©cessitent une Ă©valuation minutieuse et les rĂ©sultats intĂ©ressants devraient ĂȘtre confirmĂ©s par une mĂ©thode indĂ©pendante. Dans le futur, des Ă©tudes structurales du complexe ribosome-HTL par cryo-ME ainsi qu’une reconstitution de HTL dans des nanodisques vont ĂȘtre menĂ©es pour rĂ©vĂ©ler la conformation de HTL en cours de translocation dans un environnement plus physiologique. Des Ă©tudes biochimiques complĂ©mentaires sur le mĂ©canisme de co- et post-translocation par HTL et son spectre substrats abordent la question du rĂŽle physiologique de l’holotranslocon dans la cellule.Targeting of proteins to their proper location in the cell is crucial to the cell. The targeting information is provided in form of a signal sequence by the polypeptide itself. In Escherichia coli, membrane proteins are targeted co-translationally via the signal recognition particle (SRP) to the membrane whereas secretory proteins follow the post-translational translocation pathway characterized by the proteins SecB and SecA involved in the targeting process. Both pathways converge at the protein-conducting channel SecYEG. Interestingly, SecYEG has the possibility to recruit accessory domains SecDF-YajC and YidC, forming the holotranslocon (HTL) complex. Current research on protein translocation mostly focuses on the structure and function of the conserved bacterial heterotrimeric protein conducting channel SecYEG. Not much is known about the structure and function of the additional components of the translocation machinery SecD, SecF and YidC which are essential for E. coli. This is largely due to the lack of a purified, recombinant SecYEG-DF-YidC holotranslocon (HTL) complex. Accordingly, a thorough biophysical and structural analysis of this large, seven-membered transmembrane complex is still pending.Using a new recombineering-based vector system for expression of multi-protein complexes in E. coli, we successfully over-produced the SecYEG-DF-YajC-YidC holotranslocon and its subcomplex consisting of SecDF-YajC-YidC (DFYY). We also succeeded in detergent-solubilising and purifying these complexes. The purified holotranslocon was used to biochemically characterize the complex and to determine the structure of the holotranslocon. First of all, the HTL seems to be more competent for co-translational membrane proteins insertion compared to SecYEG alone. Regarding the post-translational translocation of a ÎČ-barrel outer-membrane protein, driven by SecA and ATP, the proton-motive force dependence of this process is increased. Furthermore, the presence of the accessory domains seems to enhance the binding of the ribosome to the translocon. By using cells depleted of SecDF and YajC, we identified possible HTL-substrates which have to be confirmed and further analyzed yet by in vitro translocation experiments.Subsequently, we solved by cryo-electron microscopy (EM) and single particle analysis the structure of the holotranslocon. By comparing the EM reconstructions of the HTL complex with the subcomplex of the accessory domains SecDF-YajC-YidC, we were able to localize the core complex SecYEG. The HTL cryo-EM structure could be refined to a resolution of 10.5 Å. This structure allows the placement of the available high–resolution crystal structure of SecYEG, SecDF, and YidC to generate a quasi-atomic model of the holotranslocon.6In order to confirm our quasi-atomic model, we made use of different crosslinking- and mass spectroscopy-based approaches (CLMS) to characterize the protein-protein interactions within the holotranslocon complex. These CLMS data sets are large and suffer from a high rate of ‘false positives’, possibly caused by inter-complex crosslinks. Thus, they need to be carefully evaluated and interesting fits should be confirmed by an independent method. In the future, structural studies of the ribosome-HTL complex by cryo-EM together with reconstitution of the HTL into nanodiscs will be undertaken to reveal the conformation of the actively translocating HTL in a more physiological environment. Additional biochemical studies on the molecular mechanism of co- and post-translocation by HTL and its substrate spectrum are addressing the question about the physiological role of the holotranslocon in the cell

    Architecture de l'Holotranslocon SecYEG-DF-YajC-YidC

    No full text
    Targeting of proteins to their proper location in the cell is crucial to the cell. The targeting information is provided in form of a signal sequence by the polypeptide itself. In Escherichia coli, membrane proteins are targeted co-translationally via the signal recognition particle (SRP) to the membrane whereas secretory proteins follow the post-translational translocation pathway characterized by the proteins SecB and SecA involved in the targeting process. Both pathways converge at the protein-conducting channel SecYEG. Interestingly, SecYEG has the possibility to recruit accessory domains SecDF-YajC and YidC, forming the holotranslocon (HTL) complex. Current research on protein translocation mostly focuses on the structure and function of the conserved bacterial heterotrimeric protein conducting channel SecYEG. Not much is known about the structure and function of the additional components of the translocation machinery SecD, SecF and YidC which are essential for E. coli. This is largely due to the lack of a purified, recombinant SecYEG-DF-YidC holotranslocon (HTL) complex. Accordingly, a thorough biophysical and structural analysis of this large, seven-membered transmembrane complex is still pending.Using a new recombineering-based vector system for expression of multi-protein complexes in E. coli, we successfully over-produced the SecYEG-DF-YajC-YidC holotranslocon and its subcomplex consisting of SecDF-YajC-YidC (DFYY). We also succeeded in detergent-solubilising and purifying these complexes. The purified holotranslocon was used to biochemically characterize the complex and to determine the structure of the holotranslocon. First of all, the HTL seems to be more competent for co-translational membrane proteins insertion compared to SecYEG alone. Regarding the post-translational translocation of a ÎČ-barrel outer-membrane protein, driven by SecA and ATP, the proton-motive force dependence of this process is increased. Furthermore, the presence of the accessory domains seems to enhance the binding of the ribosome to the translocon. By using cells depleted of SecDF and YajC, we identified possible HTL-substrates which have to be confirmed and further analyzed yet by in vitro translocation experiments.Subsequently, we solved by cryo-electron microscopy (EM) and single particle analysis the structure of the holotranslocon. By comparing the EM reconstructions of the HTL complex with the subcomplex of the accessory domains SecDF-YajC-YidC, we were able to localize the core complex SecYEG. The HTL cryo-EM structure could be refined to a resolution of 10.5 Å. This structure allows the placement of the available high–resolution crystal structure of SecYEG, SecDF, and YidC to generate a quasi-atomic model of the holotranslocon.6In order to confirm our quasi-atomic model, we made use of different crosslinking- and mass spectroscopy-based approaches (CLMS) to characterize the protein-protein interactions within the holotranslocon complex. These CLMS data sets are large and suffer from a high rate of ‘false positives’, possibly caused by inter-complex crosslinks. Thus, they need to be carefully evaluated and interesting fits should be confirmed by an independent method. In the future, structural studies of the ribosome-HTL complex by cryo-EM together with reconstitution of the HTL into nanodiscs will be undertaken to reveal the conformation of the actively translocating HTL in a more physiological environment. Additional biochemical studies on the molecular mechanism of co- and post-translocation by HTL and its substrate spectrum are addressing the question about the physiological role of the holotranslocon in the cell.L’adressage des protĂ©ines vers leur correct emplacement est crucial pour la cellule. L’information d’adressage est fournie sous la forme d’une sĂ©quence signale par le polypeptide lui-mĂȘme. Chez Escherichia coli, les protĂ©ines membranaires sont adressĂ©es vers la membrane de façon co-traductionnelle via la particule de reconnaissance du signal (SRP) tandis que les protĂ©ines sĂ©crĂ©tĂ©es suivent la voie de translocation post-traductionnelle caractĂ©risĂ©e par les protĂ©ines SecB et SecA qui sont impliquĂ©es dans le processus d’adressage. Ces deux voies convergent au niveau du canal de translocation des protĂ©ines SecYEG. Chose intĂ©ressante, SecYEG a la possibilitĂ© de recruter les domaines accessoires SecDF-YajC et YidC et ainsi former le complexe holotranslocon (HTL). La recherche actuelle sur la translocation des protĂ©ines se concentre principalement sur la structure et fonction du canal de translocation des protĂ©ines hĂ©tĂ©rotrimĂ©rique bactĂ©rien SecYEG qui est conservĂ©. Peu de choses sont connues concernant la structure et la fonction des composants additionnels SecD, SecF et YidC formant la machinerie de translocation et qui sont essentiels pour E. coli. Ceci est dĂ» principalement Ă  l’absence d’un complexe holotranslocon SecYEG-DF-YidC (HTL) recombinant purifiĂ©. En consĂ©quence, une analyse biophysique et structurale minutieuse de ce large complexe transmembranaire composĂ© de sept sous-unitĂ©s est toujours en suspens.En utilisant un nouveau systĂšme d’expression pour des complexes multi-protĂ©iques basĂ© sur la recombinaison de vecteur chez E. coli, nous avons avec succĂšs surproduit l’holotranslocon SecYEG-DF-YajC-YidC et son sous-complexe composĂ© de SecDF-YajC-YidC (DFYY). Nous avons Ă©galement rĂ©ussi Ă  solubiliser avec l’aide de dĂ©tergents et Ă  purifier ces complexes. L’holotranslocon purifiĂ© a ensuite Ă©tĂ© utilisĂ© afin de caractĂ©riser de façon biochimique le complexe et de dĂ©terminer la structure de l’holotranslocon. PremiĂšrement, le complexe HTL semble ĂȘtre plus compĂ©tent pour l’insertion co-traductionnelle des protĂ©ines membranaires comparĂ© Ă  SecYEG isolĂ©. Concernant la translocation post-traductionnelle d’une protĂ©ine de la membrane externe Ă  tonneau ÎČ, dĂ©pendante de la prĂ©sence de SecA et d’ATP, l’influence de la force proton motrice sur ce processus est augmentĂ©e. De plus, la prĂ©sence du domaine accessoire semble amĂ©liorer l’attachement du ribosome au translocon. En utilisant des cellules dĂ©plĂ©tĂ©es de SecDF et YajC, nous avons identifiĂ© des substrats possibles de HTL qui doivent maintenant ĂȘtre confirmĂ©s et analysĂ©s maniĂšre plus approfondie par des expĂ©riences de translocation in vitro.Par la suite, nous avons rĂ©solu la structure de l’holotranslocon par cryo-microscopie Ă©lectronique (ME) et analyse des particules isolĂ©es. En comparant les reconstructions de ME8du complexe HTL avec le sous-complexe de domaine accessoire SecDF-YajC-YidC, nous avons Ă©tĂ© capable de localisĂ© le complexe principal SecYEG. La structure de HTL par cryo-ME a pu ĂȘtre affinĂ©e jusqu’à une rĂ©solution de 10.5 Å. Cette structure permet le placement des structures Ă  haute rĂ©solution disponibles de SecYEG, SecDF et YidC afin de gĂ©nĂ©rer un modĂšle quasi-atomique de l’holotranslocon. Les jeu de donnĂ©es ainsi obtenus sont volumineux et souffrent d’un taux Ă©levĂ© de « faux positifs », probablement dĂ» Ă  des rĂ©actions de rĂ©ticulation inter-complexe. C’est pourquoi ils nĂ©cessitent une Ă©valuation minutieuse et les rĂ©sultats intĂ©ressants devraient ĂȘtre confirmĂ©s par une mĂ©thode indĂ©pendante. Dans le futur, des Ă©tudes structurales du complexe ribosome-HTL par cryo-ME ainsi qu’une reconstitution de HTL dans des nanodisques vont ĂȘtre menĂ©es pour rĂ©vĂ©ler la conformation de HTL en cours de translocation dans un environnement plus physiologique. Des Ă©tudes biochimiques complĂ©mentaires sur le mĂ©canisme de co- et post-translocation par HTL et son spectre substrats abordent la question du rĂŽle physiologique de l’holotranslocon dans la cellule

    Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG-SecDF-YajC-YidC

    No full text
    The SecY/61 complex forms the protein-channel component of the ubiquitous protein secretion and membrane protein insertion apparatus. The bacterial version SecYEG interacts with the highly conserved YidC and SecDF–YajC subcomplex, which facilitates translocation into and across the membrane. Together, they form the holo-translocon (HTL), which we have successfully overexpressed and purified. In contrast to the homo-dimeric SecYEG, the HTL is a hetero-dimer composed of single copies of SecYEG and SecDF–YajC–YidC. The activities of the HTL differ from the archetypal SecYEG complex. It is more effective in cotranslational insertion of membrane proteins and the posttranslational secretion of a ÎČ-barreled outer-membrane protein driven by SecA and ATP becomes much more dependent on the proton-motive force. The activity of the translocating copy of SecYEG may therefore be modulated by association with different accessory subcomplexes: SecYEG (forming SecYEG dimers) or SecDF–YajC–YidC (forming the HTL). This versatility may provide a means to refine the secretion and insertion capabilities according to the substrate. A similar modularity may also be exploited for the translocation or insertion of a wide range of substrates across and into the endoplasmic reticular and mitochondrial membranes of eukaryotes

    Cryo-EM structures of a LptDE transporter in complex with Pro-macrobodies offer insight into lipopolysaccharide translocation

    Get PDF
    Lipopolysaccharides are major constituents of the extracellular leaflet in the bacterial outer membrane and form an effective physical barrier for environmental threats and for antibiotics in Gram-negative bacteria. The last step of LPS insertion via the Lpt pathway is mediated by the LptD/E protein complex. Detailed insights into the architecture of LptDE transporter complexes have been derived from X-ray crystallography. However, no structure of a laterally open LptD transporter, a transient state that occurs during LPS release, is available to date. Here, we report a cryo-EM structure of a partially opened LptDE transporter in complex with rigid chaperones derived from nanobodies, at 3.4 Å resolution. In addition, a subset of particles allows to model a structure of a laterally fully opened LptDE complex. Our work offers insights into the mechanism of LPS insertion, provides a structural framework for the development of antibiotics targeting LptD and describes a highly rigid chaperone scaffold to enable structural biology of challenging protein targets
    corecore