73 research outputs found

    Trends in chronic hepatitis B virus infection in Italy over a 10-year period: Clues from the nationwide PITER and MASTER cohorts toward elimination

    Get PDF
    Objectives: The study measures trends in the profile of patients with chronic hepatitis B virus linked to care in Italy. Methods: A cross-sectional, multicenter, observational cohort (PITER cohort) of consecutive patients with hepatitis B surface antigen (HBsAg) over the period 2019-2021 from 46 centers was evaluated. The reference was the MASTER cohort collected over the years 2012-2015. Standard statistical methods were used. Results: The PITER cohort enrolled 4583 patients, of whom 21.8% were non-Italian natives. Compared with those in MASTER, the patients were older and more often female. The prevalence of hepatitis B e antigen (HBeAg) declined (7.2% vs 12.3; P <0.0001) and that of anti-hepatitis D virus (HDV) remained stable (9.3% vs 8.3%). In both cohorts, about 25% of the patients had cirrhosis, and those in the PITER cohort were older. HBeAg-positive was 5.0% vs 12.6% (P <0.0001) and anti-HDV positive 24.8% vs 17.5% (P <0.0017). In the logistic model, the variables associated with cirrhosis were anti-HDV-positive (odds ratio = 10.08; confidence interval 7.63-13.43), age, sex, and body mass index; the likelihood of cirrhosis was reduced by 40% in the PITER cohort. Among non-Italians, 12.3% were HBeAg-positive (vs 23.4% in the MASTER cohort; P <0.0001), and 12.3% were anti-HDV-positive (vs 11.1%). Overall, the adherence to the European Association for the Study of the Liver recommendations for antiviral treatment increased over time. Conclusion: Chronic hepatitis B virus infection appears to be in the process of becoming under control in Italy; however, HDV infection is still a health concern in patients with cirrhosis and in migrants

    Mapping and Assessment of forest Ecosystem and Their Services. Applications and guidance for decision making in the framework of MAES

    Get PDF
    The aim of this report is to illustrate by means of a series of case studies the implementation of mapping and assessment of forest ecosystem services in different contexts and geographical levels. Methodological aspects, data issues, approaches, limitations, gaps and further steps for improvement are analysed for providing good practices and decision making guidance. The EU initiative on Mapping and Assessment of Ecosystems and their Services (MAES), with the support of all Member States, contributes to improve the knowledge on ecosytem services. MAES is one of the building-block initiatives supporting the EU Biodiversity Strategy to 2000

    T-2 toksin - pojavnost i toksičnost u peradi

    Get PDF
    T-2 toxin is the most toxic type A trichothecene mycotoxin. It is the secondary metabolite of the Fusarium fungi, and is common in grain and animal feed. Toxic effects have been shown both in experimental animals and in livestock. It has been implicated in several outbreaks of human mycotoxicoses. Toxic effects in poultry include inhibition of protein, DNA, and RNA synthesis, cytotoxicity, immunomodulation, cell lesions in the digestive tract, organs and skin, neural disturbances and low performance in poultry production (decreased weight gain, egg production, and hatchability). Concentrations of T-2 toxin in feed are usually low, and its immunosuppressive effects and secondary infections often make diagnosis difficult. If at the onset of the disease, a change in diet leads to health and performance improvements in animals, this may point to mycotoxin poisoning. Regular control of grain and feed samples is a valuable preventive measure, and it is accurate only if representative samples are tested. This article reviews the incidence and toxic effects of T-2 toxin in poultry.T-2 toksin je najtoksičniji predstavnik trikotecenskih mikotoksina tipa A. On je sekundarni produkt metabolizma plijesni roda Fusarium i često je prisutan u žitaricama i hrani za životinje. Štetni učinci uočeni su u eksperimentalnih životinja i životinja u uzgoju. On se povezuje s pojavom bolesti ljudi od mikotoksikoza. Učinci toksina u peradi su višestruki: inhibicija sinteze proteina, DNA i RNA, citotoksični učinak, imunomodulatorni učinak, oštećenje stanica probavnog sustava, organa i kože, živčani poremećaji te pad proizvodnih karakteristika u uzgoju peradi (slabiji prirast, pad nesivosti i valivosti). Koncentracije T-2 toksina u hrani redovito su vrlo malene, a zbog imunosupresivnog djelovanja toksina te istodobne sekundarne infekcije bolest se često teško dijagnosticira. Pri pojavi bolesti promjenom hrane može doći do poboljšanja zdravstvenog stanja, što tako|er upućuje na moguće trovanje mikotoksinima. Redovita kontrola uzoraka žitarica i hrane za životinje jedna je od preventivnih mjera, a detekcija mikotoksina u žitaricama i hrani pouzdana je samo ako se ispituje reprezentativan uzorak. U radu su opisani učestalost i toksični učinci T-2 toksina u peradi

    Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab

    Get PDF
    This paper presents the beam dynamics systematic corrections and their uncertainties for the Run-1 dataset of the Fermilab Muon g-2 Experiment. Two corrections to the measured muon precession frequency ωam are associated with well-known effects owing to the use of electrostatic quadrupole (ESQ) vertical focusing in the storage ring. An average vertically oriented motional magnetic field is felt by relativistic muons passing transversely through the radial electric field components created by the ESQ system. The correction depends on the stored momentum distribution and the tunes of the ring, which has relatively weak vertical focusing. Vertical betatron motions imply that the muons do not orbit the ring in a plane exactly orthogonal to the vertical magnetic field direction. A correction is necessary to account for an average pitch angle associated with their trajectories. A third small correction is necessary, because muons that escape the ring during the storage time are slightly biased in initial spin phase compared to the parent distribution. Finally, because two high-voltage resistors in the ESQ network had longer than designed RC time constants, the vertical and horizontal centroids and envelopes of the stored muon beam drifted slightly, but coherently, during each storage ring fill. This led to the discovery of an important phase-acceptance relationship that requires a correction. The sum of the corrections to ω_{a}^{m} is 0.50±0.09 ppm; the uncertainty is small compared to the 0.43 ppm statistical precision of ω_{a}^{m}

    Magnetic-field measurement and analysis for the Muon g − 2 Experiment at Fermilab

    Get PDF
    The Fermi National Accelerator Laboratory (FNAL) Muon g - 2 Experiment has measured the anomalous precession frequency a_{μ}(g_{μ} - 2)/2 of the muon to a combined precision of 0.46 parts per million with data collected during its first physics run in 2018. This paper documents the measurement of the magnetic field in the muon storage ring. The magnetic field is monitored by systems and calibrated in terms of the equivalent proton spin precession frequency in a spherical water sample at 34.7C. The measured field is weighted by the muon distribution resulting in \tilde{ω}'_{p}, the denominator in the ratio \tilde{ω}_{a}/\tilde{ω}'_{p} that together with known fundamental constants yields aμ. The reported uncertainty on \tilde{ω}'_{p} for the Run-1 data set is 114 ppb consisting of uncertainty contributions from frequency extraction, calibration, mapping, tracking, and averaging of 56 ppb, and contributions from fast transient fields of 99 ppb

    Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives

    Get PDF
    Deoxynivalenol (DON) is the major mycotoxin produced by Fusarium fungi in grains. Food and feed contaminated with DON pose a health risk to humans and livestock. The risk can be reduced by enzymatic detoxification. Complete mineralization of DON by microbial cultures has rarely been observed and the activities turned out to be unstable. The detoxification of DON by reactions targeting its epoxide group or hydroxyl on carbon 3 is more feasible. Microbial strains that de-epoxidize DON under anaerobic conditions have been isolated from animal digestive system. Feed additives claimed to de-epoxidize trichothecenes enzymatically are on the market but their efficacy has been disputed. A new detoxification pathway leading to 3-oxo-DON and 3-epi-DON was discovered in taxonomically unrelated soil bacteria from three continents; the enzymes involved remain to be identified. Arabidopsis, tobacco, wheat, barley, and rice were engineered to acetylate DON on carbon 3. In wheat expressing DON acetylation activity, the increase in resistance against Fusarium head blight was only moderate. The Tri101 gene from Fusarium sporotrichioides was used; Fusarium graminearum enzyme which possesses higher activity towards DON would presumably be a better choice. Glycosylation of trichothecenes occurs in plants, contributing to the resistance of wheat to F. graminearum infection. Marker-assisted selection based on the trichothecene-3-O-glucosyltransferase gene can be used in breeding for resistance. Fungal acetyltransferases and plant glucosyltransferases targeting carbon 3 of trichothecenes remain promising candidates for engineering resistance against Fusarium head blight. Bacterial enzymes catalyzing oxidation, epimerization, and less likely de-epoxidation of DON may extend this list in future

    Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

    Get PDF
    We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From the ratio ω_{a}/ω[over ˜]_{p}^{'}, together with precisely determined external parameters, we determine a_{μ}=116 592 057(25)×10^{-11} (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a_{μ}(FNAL)=116 592 055(24)×10^{-11} (0.20 ppm). The new experimental world average is a_{μ}(exp)=116 592 059(22)×10^{-11} (0.19 ppm), which represents a factor of 2 improvement in precision

    Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

    Get PDF

    Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g-2 Experiment

    Get PDF
    The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency ωa\omega_a to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiment's muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of aμ(FNAL)=116592040(54)×1011a_{\mu}({\rm FNAL}) = 116\,592\,040(54) \times 10^{-11} (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis and fitting of the data to measure the precession frequency. It also presents the averaging of the results from the eleven separate determinations of \omega_a, and the systematic uncertainties on the result.Comment: 29 pages, 19 figures. Published in Physical Review

    Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab

    Get PDF
    This paper presents the beam dynamics systematic corrections and their uncertainties for the Run-1 data set of the Fermilab Muon g-2 Experiment. Two corrections to the measured muon precession frequency ωam\omega_a^m are associated with well-known effects owing to the use of electrostatic quadrupole (ESQ) vertical focusing in the storage ring. An average vertically oriented motional magnetic field is felt by relativistic muons passing transversely through the radial electric field components created by the ESQ system. The correction depends on the stored momentum distribution and the tunes of the ring, which has relatively weak vertical focusing. Vertical betatron motions imply that the muons do not orbit the ring in a plane exactly orthogonal to the vertical magnetic field direction. A correction is necessary to account for an average pitch angle associated with their trajectories. A third small correction is necessary because muons that escape the ring during the storage time are slightly biased in initial spin phase compared to the parent distribution. Finally, because two high-voltage resistors in the ESQ network had longer than designed RC time constants, the vertical and horizontal centroids and envelopes of the stored muon beam drifted slightly, but coherently, during each storage ring fill. This led to the discovery of an important phase-acceptance relationship that requires a correction. The sum of the corrections to ωam\omega_a^m is 0.50 ±\pm 0.09 ppm; the uncertainty is small compared to the 0.43 ppm statistical precision of ωam\omega_a^m
    corecore