4 research outputs found

    Importance of outer-sphere and aggregation phenomena in the relaxation properties of phosphonated gadolinium complexes with potential applications as MRI contrast agents

    Get PDF
    [Abstract] A series composed of a tetra-, a tris- and a bisphosphonated ligand based on a pyridine scaffold (L4, L3 and L2, respectively) was studied within the frame of lanthanide (Ln) coordination. The stability constants of the complexes formed with lanthanide cations (Ln=La, Nd, Eu, Gd, Tb, Er and Lu) were determined by potentiometry in aqueous solutions (25.0 °C, 0.1 M NaClO4), showing that the tetraphosphonated complexes are among the most stable LnIII complexes reported in the literature. The complexation of L4 was further studied by different titration experiments using mass spectrometry and various spectroscopic techniques including UV/Vis absorption, and steady state and time-resolved luminescence (Ln=Eu and Tb). Titration experiments confirmed the formation of highly stable [LnL4] complexes. 31P NMR experiments of the LuL4 complex revealed an intramolecular interconversion process which was studied at different temperatures and was rationalized by DFT modelling. The relaxivity properties of the GdIII complexes were studied by recording their 1H NMRD profiles at various temperatures, by temperature dependent 17O NMR experiments (GdL4) and by pH dependent relaxivity measurements at 0.47 T (GdL3 and GdL2). In addition to the high relaxivity values observed for all complexes, the results showed an important second-sphere contribution to relaxivity and pH dependent variations associated with the formation of aggregates for GdL2 and GdL3. Finally, intravenous injection of GdL4 to a mouse was followed by dynamic MRI imaging at 1.5 T, which showed that the complex can be immediately found in the blood stream and rapidly eliminated through the liver and in large part through the kidneys.Torino. Compagnia di San Paolo; CSP-2012 NANOPROGL

    Self‐aggregated dinuclear lanthanide(III) complexes as potential bimodal probes for magnetic resonance and optical imaging

    Get PDF
    [Abstract] Homodinuclear lanthanide complexes (Ln=La, Eu, Gd, Tb, Yb and Lu) derived from a bis‐macrocyclic ligand featuring two 2,2â€Č,2â€Čâ€Č‐(1,4,7,10‐tetraazacyclododecane‐1,4,7 triyl)triacetic acid chelating sites linked by a 2,6‐bis(pyrazol‐1‐yl)pyridine spacer (H2L3) were prepared and characterized. Luminescence lifetime measurements recorded on solutions of the EuIII and TbIII complexes indicate the presence of one inner‐sphere water molecule coordinated to each metal ion in these complexes. The overall luminescence quantum yields were determined (∅H2O=0.01 for [Eu2(L3)] and 0.50 for [Tb2(L3)] in 0.01 MTRIS/HCl, pH 7.4; TRIS=tris(hydroxymethyl)aminomethane), pointing to an effective sensitization of the metal ion by the bispyrazolylpyridyl unit of the ligand, especially with Tb. The nuclear magnetic relaxation dispersion (NMRD) profiles recorded for [Gd2(L3)] are characteristic of slowly tumbling systems, showing a low‐field plateau and a broad maximum around 30 MHz. This suggests the occurrence of aggregation of the complexes giving rise to slowly rotating species. A similar behavior is observed for the analogous GdIII complex containing a 4,4â€Č dimethyl‐2,2â€Č‐bipyridyl spacer ([Gd2(L1)]). The relaxivity of [Gd2(L3)] recorded at 0.5 T and 298 K (pH 6.9) amounts to 13.7 mM−1 s−1. The formation of aggregates has been confirmed by dynamic light scattering (DLS) experiments, which provided mean particle sizes of 114 and 38 nm for [Gd2(L1)] and [Gd2(L3)], respectively. TEM images of [Gd2(L3)] indicate the formation of nearly spherical nanosized aggregates with a mean diameter of about 41 nm, together with some nonspherical particles with larger size.Ministerio de EducaciĂłn y Ciencia; CTQ2009‐10721Xunta de Galicia; IN845B‐2010/06

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
    corecore