13 research outputs found
Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey
Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020
Increase in heme oxygenase-1 levels ameliorates renovascular hypertension
Increase in heme oxygenase-1 levels ameliorates renovascular hypertensionBackgroundThe heme oxygenase system (HO-1 and HO-2) catalyzes the conversion of heme to free iron, carbon monoxide (CO), a vasodepressor, and biliverdin, which is further converted to bilirubin, an antioxidant. HO-1 induction has been shown to suppress arachidonic acid metabolism by cytochrome P450 (CYP450) monooxygenases and cyclooxygenases (COX), and to decrease blood pressure in spontaneously hypertensive rats (SHR). The Goldblatt 2K1C model is a model of renovascular hypertension in which there is increased expression of COX-2 in the macula densa and increased renin release from the juxtaglomerular apparatus of the clipped kidney. We examined whether HO-1 overexpression, as a prophylactic approach, would attenuate renovascular hypertension and evaluated potential mechanisms that may account for its effect.Methods2K1C rats were treated with cobalt protoporphyrin (CoPP) or tin mesoporphyrin (SnMP) one day before surgery and weekly for three weeks thereafter. We measured systolic blood pressure, HO activity, HO-1, HO-2, COX-1 and COX-2 protein expression, heme content, and nitrotyrosine levels as indices of oxidative stress. Urinary prostaglandin excretion (PGE2), plasma renin activity (PRA), and plasma aldosterone levels were also measured.ResultsCoPP administration induced renal HO-1 expression by 20-fold and HO activity by 6-fold. This was associated with a reduction in heme content, nitrotyrosine levels, COX-2 expression and urinary PGE2 excretion, and attenuation of the development of hypertension in the 2K1C rats. There was no decrease in plasma renin activity; however, plasma aldosterone levels were significantly lower. In the 2K1C SnMP-treated rats, blood pressure was significantly higher than that of untreated 2K1C rats throughout the study, and the difference in the size of the smaller left clipped kidney compared to the nonclipped right kidney was significantly increased.ConclusionThese findings define an action of prolonged HO-1 induction to interrupt and counteract the influence of the renin-angiotensin-aldosterone system (RAAS) to increase in blood pressure in the 2K1C model of renovascular hypertension. Multiple mechanisms include a decrease in oxidative stress as indicated by the decrease in cellular heme and nitrotyrosine levels, an anti-inflammatory action as evidenced by a decrease in COX-2 and PGE2, interference with the action of angiontensin II (Ang II) as evidenced by an increase in PRA in the face of a decrease in PGE2 and aldosterone, as well as the inhibition of aldosterone synthesis
Heme oxygenase: the key to renal function regulation
Heme oxygenase (HO) plays a critical role in attenuating the production of reactive oxygen species through its ability to degrade heme in an enzymatic process that leads to the production of equimolar amounts of carbon monoxide and biliverdin/bilirubin and the release of free iron. The present review examines the beneficial role of HO-1 (inducible form of HO) that is achieved by increased expression of this enzyme in renal tissue. The influence of the HO system on renal physiology, obesity, vascular dysfunction, and blood pressure regulation is reviewed, and the clinical potential of increased levels of HO-1 protein, HO activity, and HO-derived end products of heme degradation is discussed relative to renal disease. The use of pharmacological and genetic approaches to investigate the role of the HO system in the kidney is key to the development of therapeutic approaches to prevent the adverse effects that accrue due to an impairment in renal function