954 research outputs found
A Temporal GIS Approach to Characterizing Geographical Dynamics
Temporal GIS research has historically focused on change, motion, and events. This research introduces a framework to represent concepts of fluid kinematics with the emphasis on the concept of flows. General circulation models (GCMs) and other spatially explicit environmental models produce massive time series of geographic fields (e.g. temperature) that call for effective GIS approaches to elicit temporal information embedded in these model outputs. Common temporal GIS approaches with discrete constructs in space and time tend to overlook the spatiotemporal continuity that is fundamental to the understanding of geographic dynamic fields, such as temperature. Common methods of analyzing climatological characteristics center on trend analysis at fixed locations or monitoring meteorological phenomena, such as storm tracks, to evaluate circulation changes. The proposed temporal GIS framework, on the other hand, uses the velocity of virtual particles with fixed climatological values to capture changes in scalar continuous fields. The resulting spatiotemporal distributions of velocity suggest kinematic flows that can be used to recognize features indicative of geographic processes, such as divergence and convergence of isolines. Summative characterizations of these kinematic features highlight the embedded change and motion in these temporal sets of scalar fields and facilitate understanding and comparing model outputs
Montmorency tart cherry supplementation and exercise positively affect bone microarchitecture and biomechanics in the growing skeleton
Objectives: This study investigated the efficacy of Montmorency tart cherry (TC) alone and in combination with exercise on improving bone quality in young growing animals and the underlying mechanisms of action.Methods: Six-week-old female C57BL/6 mice were randomly assigned to 4 groups (n=12 mice/group) in a 2x2 factorial design: control AIN-93G diet (CON), CON+exercise, TC (10% w/w), or TC+exercise. The exercise consisted of treadmill running for 30 min, 5 d/wk at 12 m/min and a 5 degree incline. Body weights were recorded weekly. After 8 wks of treatment, mesenchymal stem cells (MSC) in the tibial bone marrow were quantified via flow cytometry fluorescent activated cell sorting (FACS). Trabecular and cortical bone microarchitecture in the femur and lumbar vertebrae was assessed using micro-computed tomography. Biomechanical testing was performed using finite element analysis (FEA). The relative abundance of RNA for genes involved in osteoblast and osteoclast differentiation and activity was determined using RT-PCR. Data were analyzed using a 2-way ANOVA with TC and exercise as factors.Results: At the end of the study, no differences in body weight were observed. Trabecular bone volume in the femur and spine was increased with exercise and TC (p<0.05), but there was no interaction. Cortical bone thickness in the vertebra was also increased by TC and exercise (p<0.001), but not in the femur. Trabecular bone strength and stiffness were increased in the vertebra in response to TC and exercise, but only in response to TC in the femur (P<0.001). An increase in bone marrow MSCs occurred in response to exercise (p<0.01), but not TC. However, the combination of TC and exercise reduced nuclear factor of activated T-cells 1 (Nfatc1) femur gene expression, a key regulator of osteoclastogenesis (p<0.05). TC also increased bone morphogenetic protein (BMP)2 gene expression, a regulator of osteoblastogenesis.Conclusion: Our data indicate that TC and exercise alone had positive effects on bone quality by suppressing regulators of osteoclastogenesis and increasing regulators of osteoblastogenesis. Even though the effects of TC and exercise were not synergistic, the effects of TC alone on bone were similar to and in some cases greater than exercise alone
Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests
Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere.
Despite its essential role in carbon and nutrient cycling, the temperature sensitivity
of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in
tropical montane wet forests where the warming trend may be amplified compared
to tropical wet forests at lower elevations. We quantified leaf litter decomposition
rates along a highly constrained 5.2 ◦C mean annual temperature (MAT) gradient in
tropical montane wet forests on the Island ofHawaii. Dominant vegetation, substrate
type and age, soil moisture, and disturbance history are all nearly constant across this
gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition
and nutrient release. Leaf litter decomposition rates were a positive linear function
of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31
days for each 1 ◦C increase in MAT. Our estimate of the Q10 temperature coefficient
for leaf litter decomposition was 2.17, within the commonly reported range
for heterotrophic organic matter decomposition (1.5–2.5) across a broad range of
ecosystems. The percentage of leaf litter nitrogen (N) remaining after six months
declined linearly with increasing MAT from ∼88% of initial N at the coolest site to
∼74% at the warmest site. The lack of net N immobilization during all three litter
collection periods at all MAT plots indicates that N was not limiting to leaf litter
decomposition, regardless of temperature. These results suggest that leaf litter decay
in tropical montane wet forests may be more sensitive to rising MAT than in tropical
lowland wet forests, and that increased rates of N release from decomposing litter
could delay or prevent progressive N limitation to net primary productivity with
climate warming
SPT 0538–50: Physical Conditions in the Interstellar Medium of a Strongly Lensed Dusty Star-forming Galaxy at z = 2.8
We present observations of SPT-S J053816–5030.8, a gravitationally lensed dusty star-forming galaxy (DSFG) at z = 2.7817 that was first discovered at millimeter wavelengths by the South Pole Telescope. SPT 0538–50 is typical of the brightest sources found by wide-field millimeter-wavelength surveys, being lensed by an intervening galaxy at moderate redshift (in this instance, at z = 0.441). We present a wide array of multi-wavelength spectroscopic and photometric data on SPT 0538–50, including data from ALMA, Herschel PACS and SPIRE, Hubble, Spitzer, the Very Large Telescope, ATCA, APEX, and the Submillimeter Array. We use high-resolution imaging from the Hubble Space Telescope to de-blend SPT 0538–50, separating DSFG emission from that of the foreground lens. Combined with a source model derived from ALMA imaging (which suggests a magnification factor of 21 ± 4), we derive the intrinsic properties of SPT 0538–50, including the stellar mass, far-IR luminosity, star formation rate, molecular gas mass, and—using molecular line fluxes—the excitation conditions within the interstellar medium. The derived physical properties argue that we are witnessing compact, merger-driven star formation in SPT 0538–50 similar to local starburst galaxies and unlike that seen in some other DSFGs at this epoch
Auto-immune haematological complications occurring during the treatment of malignant lymphoproliferative diseases
Auto-immune haematological complications occurring during treatment for malignant Iymphoproliferative diseases are described in 5 patients. There appeared to be a temporal relationship between the development of these complications and the administration of chemotherapeutic drugs or extensive radiotherapy.S. Afr. Med. J., 48, 2143 (1974)
ALLSMOG: an APEX Low-redshift Legacy Survey for MOlecular Gas. I - molecular gas scaling relations, and the effect of the CO/H2 conversion factor
We present ALLSMOG, the APEX Low-redshift Legacy Survey for MOlecular Gas.
ALLSMOG is a survey designed to observe the CO(2-1) emission line with the APEX
telescope, in a sample of local galaxies (0.01 < z < 0.03), with stellar masses
in the range 8.5 < log(M*/Msun) < 10. This paper is a data release and initial
analysis of the first two semesters of observations, consisting of 42 galaxies
observed in CO(2-1). By combining these new CO(2-1) emission line data with
archival HI data and SDSS optical spectroscopy, we compile a sample of low-mass
galaxies with well defined molecular gas masses, atomic gas masses, and
gas-phase metallicities. We explore scaling relations of gas fraction and gas
consumption timescale, and test the extent to which our findings are dependent
on a varying CO/H2 conversion factor. We find an increase in the H2/HI mass
ratio with stellar mass which closely matches semi-analytic predictions. We
find a mean molecular gas fraction for ALLSMOG galaxies of MH2/M* = (0.09 -
0.13), which decreases with stellar mass. We measure a mean molecular gas
consumption timescale for ALLSMOG galaxies of 0.4 - 0.7 Gyr. We also confirm
the non-universality of the molecular gas consumption timescale, which varies
(with stellar mass) from ~100 Myr to ~2 Gyr. Importantly, we find that the
trends in the H2/HI mass ratio, gas fraction, and the non-universal molecular
gas consumption timescale are all robust to a range of recent
metallicity-dependent CO/H2 conversion factors.Comment: 25 pages, 15 figures. Accepted for publication in MNRA
The star formation rate distribution function of the local Universe
We present total infrared (IR) and ultraviolet (UV) luminosity functions derived from large representative samples of galaxies at z ~ 0, selected at IR and UV wavelengths from the Imperial IRAS Faint Source Catalogue redshift data base (IIFSCz) catalogue, and the GALEX All-Sky Imaging Survey (AIS), respectively. We augment these with deep Spitzer and GALEX imaging of galaxies in the 11 Mpc Local Volume Legacy (LVL) Survey, allowing us to extend these luminosity functions to lower luminosities (~10^6 L_⊙), and providing good constraints on the slope of the luminosity function at the extreme faint end for the first time. Using conventional star formation prescriptions, we generate from our data the star formation rate (SFR) distribution function for the local Universe. We find that it has a Schechter form, the faint-end slope has a constant value (to the limits of our data) of α=−1.51 ± 0.08 and the 'characteristic' SFR ψ^* is 9.2 M_⊙ yr^(−1). We also show the distribution function of the SFR volume density; we then use this to calculate a value for the total SFR volume density at z ~ 0 of 0.025 ± 0.0016 M_⊙ yr^(−1) Mpc^(−3), of which ~20 per cent is occurring in starbursts. Decomposing the total star formation by infrared luminosity, it can be seen that 9 ± 1 per cent is due to LIRGs, and 0.7 ± 0.2 per cent is occurring in ULIRGs. By comparing UV and IR emission for galaxies in our sample, we also calculate the fraction of star formation occurring in dust-obscured environments, and examine the distribution of dusty star formation: we find a very shallow slope at the highly extincted end, which may be attributable to line-of-sight orientation effects as well as conventional internal extinction
Forest Restoration and Parasitoid Wasp Communities in Montane Hawai\u27i
Globally, most restoration efforts focus on re-creating the physical structure (flora or physical features) of a target ecosystem with the assumption that other ecosystem components will follow. Here we investigate that assumption by documenting biogeographical patterns in an important invertebrate taxon, the parasitoid wasp family Ichneumonidae, in a recently reforested Hawaiian landscape. Specifically, we test the influence of (1) planting configurations (corridors versus patches), (2) vegetation age, (3) distance from mature native forest, (4) surrounding tree cover, and (5) plant community composition on ichneumonid richness, abundance, and composition. We sampled over 7,000 wasps, 96.5% of which were not native to Hawai\u27i. We found greater relative richness and abundance of ichneumonids, and substantially different communities, in restored areas compared to mature forest and abandoned pasturelands. Non-native ichneumonids drive these differences; restored areas and native forest did not differ in native ichneumonid abundance. Among restored areas, ichneumonid communities did not differ by planting age or configuration. As tree cover increased within 120 m of a sampling point, ichneumonid community composition increasingly resembled that found in native forest. Similarly, native ichneumonid abundance increased with proximity to native forest. Our results suggest that restoration plantings, if situated near target forest ecosystems and in areas with higher local tree cover, can facilitate restoration of native fauna even in a highly invaded system. © 2013 Gould et al
ALMA observations of atomic carbon in z~4 dusty star-forming galaxies
We present ALMA [CI]() (rest frequency 492 GHz) observations for a
sample of 13 strongly-lensed dusty star-forming galaxies originally discovered
at 1.4mm in a blank-field survey by the South Pole Telescope. We compare these
new data with available [CI] observations from the literature, allowing a study
of the ISM properties of extreme dusty star-forming galaxies spanning
a redshift range . Using the [CI] line as a tracer of the molecular
ISM, we find a mean molecular gas mass for SPT-DSFGs of
M. This is in tension with gas masses derived via low- CO
and dust masses; bringing the estimates into accordance requires either (a) an
elevated CO-to-H conversion factor for our sample of and a gas-to-dust ratio , or (b) an high carbon abundance . Using observations of a range of additional atomic
and molecular lines (including [CI], [CII], and multiple transitions of CO), we
use a modern Photodissociation Region code (3D-PDR) to assess the physical
conditions (including the density, UV radiation field strength, and gas
temperature) within the ISM of the DSFGs in our sample. We find that the ISM
within our DSFGs is characterised by dense gas permeated by strong UV fields.
We note that previous efforts to characterise PDR regions in DSFGs may have
significantly underestimated the density of the ISM. Combined, our analysis
suggests that the ISM of extreme dusty starbursts at high redshift consists of
dense, carbon-rich gas not directly comparable to the ISM of starbursts in the
local Universe.Comment: 21 pages, 12 figures. Accepted for publication in MNRA
- …