7 research outputs found

    Scaling of sensory information in largeneural populations shows signatures ofinformation-limiting correlations

    Get PDF
    How is information distributed across large neuronal populations within a given brain area? Information may be distributed roughly evenly across neuronal populations, so that total information scales linearly with the number of recorded neurons. Alternatively, the neural code might be highly redundant, meaning that total information saturates. Here we investigate how sensory information about the direction of a moving visual stimulus is distributed across hundreds of simultaneously recorded neurons in mouse primary visual cortex. We show that information scales sublinearly due to correlated noise in these populations. We compartmentalized noise correlations into information-limiting and nonlimiting components, then extrapolate to predict how information grows with even larger neural populations. We predict that tens of thousands of neurons encode 95% of the information about visual stimulus direction, much less than the number of neurons in primary visual cortex. These findings suggest that the brain uses a widely distributed, but nonetheless redundant code that supports recovering most sensory information from smaller subpopulations.We would like to thank Alexandre Pouget, Peter Latham, and members of the HMSNeurobiology Department for useful discussions and feedback on the work, and RachelWilson and Richard Born for comments on early versions of the manuscript. The workwas supported by a scholar award from the James S. McDonnell Foundation (grant#220020462 to J.D.), grants from the NIH (R01MH115554 to J.D.; R01MH107620 to C.D.H.; R01NS089521 to C.D.H.; R01NS108410 to C.D.H.; F31EY031562 to A.W.J.), theNSF’s NeuroNex program (DBI-1707398. to R.N.), MINECO (Spain; BFU2017-85936-Pto R.M.-B.), the Howard Hughes Medical Institute (HHMI, ref 55008742 to R.M.-B.), theICREA Academia (2016 to R.M.-B.), the Government of Aragon (Spain; ISAAC lab, codT33 17D to I.A.-R.), the Spanish Ministry of Economy and Competitiveness (TIN2016-80347-R to I.A.-R.), the Gatsby Charitable Foundation (to R.N.), and an NSF GraduateResearch Fellowship (to A.W.J.)

    Design of the instrument and telescope control units integrated subsystem of the ESA-ARIEL payload

    Get PDF
    The Atmospheric Remote-sensing Infrared Exoplanets Large-survey (ARIEL)1 Mission has been recently selected by ESA as the fourth medium-class Mission (M4) in the framework of the Cosmic Vision Program. The goal of ARIEL is to investigate, thanks to VIS photometry and IR spectroscopy, the atmospheres of several hundreds of planets orbiting nearby stars in order to address the fundamental questions on how planetary systems form and evolve.2 During its four-years mission, ARIEL will observe several hundreds of exoplanets ranging from Jupiter- and Neptune-size down to super-Earth and Earth-size with its 1 meter-class telescope.3 The analysis of spectra and photometric data will allow to extract the chemical fingerprints of gases and condensates in the planets atmospheres, including the elemental composition for the most favorable targets. It will also enable the study of thermal and scattering properties of the atmosphere as the planet orbits around its parent star

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Impact of antibiotic resistance on outcomes of neutropenic cancer patients with Pseudomonas aeruginosa bacteraemia (IRONIC study): study protocol of a retrospective multicentre international study

    No full text
    WOS: 000471192800144PubMed ID: 31129580Introduction Pseudomonas aeruginosa (PA) has historically been one of the major causes of severe sepsis and death among neutropenic cancer patients. There has been a recent increase of multidrug-resistant PA (MDRPA) isolates that may determine a worse prognosis, particularly in immunosuppressed patients. The aim of this study is to establish the impact of antibiotic resistance on the outcome of neutropenic onco-haematological patients with PA bacteraemia, and to identify the risk factors for MDRPA bacteraemia and mortality. Methods and analysis This is a retrospective, observational, multicentre, international study. All episodes of PA bacteraemia occurring in neutropenic onco-haematological patients followed up at the participating centres from 1 January 2006 to 31 May 2018 will be retrospectively reviewed. The primary end point will be overall case-fatality rate within 30 days of onset of PA bacteraemia. The secondary end points will be to describe the following: the incidence and risk factors for multidrug-resistant and extremely drug-resistant PA bacteraemia (by comparing the episodes due to susceptible PA with those produced by MDRPA), the efficacy of ceftolozane/tazobactam, the rates of persistent bacteraemia and bacteraemia relapse and the risk factors for very early (48 hours), early (7 days) and overall (30 days) case-fatality rates. Ethics and dissemination The Clinical Research Ethics Committee of Bellvitge University Hospital approved the protocol of the study at the primary site. To protect personal privacy, identifying information of each patient in the electronic database will be encrypted. The processing of the patients' personal data collected in the study will comply with the Spanish Data Protection Act of 1998 and with the European Directive on the privacy of data. All data collected, stored and processed will be anonymised. Results will be reported at conferences and in peer-reviewed publications.Plan Nacional de I+ D+ i 2013-2016; Instituto de Salud Carlos III, Subdireccion General de Redes y Centros de Investigacion Cooperativa, Ministerio de Economia, Industria y Competitividad, Spanish Network for Research in Infectious Diseases [REIPI RD16/0016/0001]; European Development Regional Fund "A way to achieve Europe", Operative Programme Intelligent Growth 2014-2020This study was supported by Plan Nacional de I+ D+ i 2013-2016 and Instituto de Salud Carlos III, Subdireccion General de Redes y Centros de Investigacion Cooperativa, Ministerio de Economia, Industria y Competitividad, Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0001) and co-financed by European Development Regional Fund "A way to achieve Europe", Operative Programme Intelligent Growth 2014-2020
    corecore