103 research outputs found

    The minimal length: a cut-off in disguise?

    Full text link
    The minimal-length paradigm, a possible implication of quantum gravity at low energies, is commonly understood as a phenomenological modification of Heisenberg's uncertainty relation. We show that this modification is equivalent to a cut-off in the space conjugate to the position representation, i.e. the space of wave numbers, which does not necessarily correspond to momentum space. This result is generalized to several dimensions and noncommutative geometries once a suitable definition of the wave number is provided. Furthermore, we find a direct relation between the ensuing bound in wave-number space and the minimal-length scale. For scenarios in which the existence of the minimal length cannot be explicitly verified, the proposed framework can be used to clarify the situation. Indeed, applying it to common models, we find that one of them does, against all expectations, allow for arbitrary precision in position measurements. In closing, we comment on general implications of our findings for the field. In particular, we point out that the minimal length is purely kinematical such that, effectively, there is only one model of minimal-length quantum mechanics

    30 years in: Quo vadis generalized uncertainty principle?

    Full text link
    According to a number of arguments in quantum gravity, both model-dependent and model-independent, Heisenberg's uncertainty principle is modified when approaching the Planck scale. This deformation is attributed to the existence of a minimal length. The ensuing models have found entry into the literature under the term Generalized Uncertainty Principle (GUP). In this work, we discuss several conceptual shortcomings of the underlying framework and critically review recent developments in the field. In particular, we touch upon the issues of relativistic and field theoretical generalizations, the classical limit and the application to composite systems. Furthermore, we comment on subtleties involving the use of heuristic arguments instead of explicit calculations. Finally, we present an extensive list of constraints on the model parameter β\beta, classifying them on the basis of the degree of rigour in their derivation and reconsidering the ones subject to problems associated with composites.Comment: 38 pages. Accepted for publication in Classical and Quantum Gravity, "Special Issue: Focus on Quantum Gravity Phenomenology in the Multi-Messenger Era: Challenges and Perspectives

    Spin operator, Bell nonlocality and Tsirelson bound in quantum-gravity induced minimal-length quantum mechanics

    Full text link
    Different approaches to quantum gravity converge in predicting the existence of a minimal scale of length. This raises the fundamental question as to whether and how an intrinsic limit to spatial resolution can affect quantum mechanical observables associated to internal degrees of freedom. We answer this question in general terms by showing that the spin operator acquires a momentum-dependent contribution in quantum mechanics equipped with a minimal length. Among other consequences, this modification induces a form of quantum nonlocality stronger than the one arising in ordinary quantum mechanics. In particular, we show that violations of the Bell inequality can exceed the maximum value allowed in ordinary quantum mechanics, the so-called Tsirelson bound, by a positive-valued function of the momentum operator. We introduce possible experimental settings based on neutron interferometry and quantum contextuality, and we provide preliminary estimates on the values of the physical parameters needed for actual laboratory implementations

    Bell nonlocality in maximal-length quantum mechanics

    Full text link
    In this paper, we investigate the consequences of maximal length as well as minimal momentum scales on nonlocal correlations shared by two parties of a bipartite quantum system. To this aim, we rely on a general phenomenological scheme which is usually associated with the non-negligible spacetime curvature at cosmological scales, namely the extended uncertainty principle. In so doing, we find that quantum correlations are degraded if the deformed quantum mechanical model mimics a positive cosmological constant. This opens up the possibility to recover classicality at sufficiently large distances.Comment: 9 page

    Serious damage by Diplodia africana on Pinus pinea in the Vesuvius National Park.

    Get PDF
    In some municipalities, located within the boundaries of the Vesuvius National Park, several area with forest cover of Pinus pinea showed severe withering of the crowns and damage to pine cones. In the present study, we have isolated in the period may 2013 ??? may 2014 from Ercolano, San Sebastiano, Terzigno, Torre del Greco and Trecase an anamorphic form of Botryosphaeriaceae. The latter cause dieback and serious canker on several woody plants, including species of Pinus. Morphological and cultural characteristics as well as DNA sequence data (5.8S rDNA, ITS-1 and ITS-4) were made on 30 isolates obtained from 5 municipalities. All strains belonged to only two species: Botryosphaeria dothidea and its anamorph, Diplodia africana. These two fungi were present on all pine cones collected and analyzed. Finally we carried out growth assays at different temperatures: 8 °C, 18 °C and 28 °C. All fungi found the optimum of growth at 28°C while at 8°C we noted the lowest growth. This seems to be the first report of D. africana on Pinus species in Campania Region

    Climate complexity in the migratory cycle of Ammodramus bairdii

    Get PDF
    Abstract One way to understand the ecology of bird migration is to analyze how birds use their ecological niche during their annual cycle. Ammodramus bairdii is a grassland specialist sparrow that breeds in southern Canada and the northern U.S.A. and winters in the Chihuahuan Desert. A continuous and alarming decrease of its populations has been observed over the last 50 years, and studying its seasonal distribution and associated climatic niches could help improve strategies for its conservation. We analyzed the temporal use of its Grinnellian niche (GN) -set of environmental conditions under which a species can establish and persist; in this case the climatic attributes-. We modeled the GN for the reproductive and winter seasons and projected them onto each other (inter-prediction), and also onto transient migratory periods. To measure niche breadth and their overlap, minimum convex polygons (MCP) were calculated for the climatic space. The niches of each of the two seasons were tested for similarity using the PCA axes of climatic variables. The geographic areas with optimal, suboptimal and marginal conditions were identified, based on the distance to the centroid of the GN. The models for each season revealed no geographic inter-prediction among them, with the exception of winter to migratory seasons. The niche breadth of the winter was greater than that of the reproductive season, with an overlap of 22.47% and 45.18%, respectively. The similarity analyses showed a value of zero between seasons. The climate conditions for the records during the migratory months corresponded with suboptimal and marginal conditions of the sparrow’s winter niche. These results suggest that A. bairdii uses different climate conditions within ecological niches of each season during its migratory cycle

    Potential distribution of Xylella fastidiosa in Italy: a maximum entropy model

    Get PDF
    Species distribution models may provide realistic scenarios to explain the influence of bioclimatic variables in the context of emerging plant pathogens. Xylella fastidiosa is a xylem-limited Gram-negative bacterium causing severe diseases in many plant species. We developed a maximum entropy model for X. fastidiosa in Italy. Our objectives were to carry out a preliminary analysis of the species’ potential geographical distribution and determine which eco-geographical variables may favour its presence in other Italian regions besides Apulia. The analysis of single variable contribution showed that precipitation of the driest (40.3%) and wettest (30.4%) months were the main factors influencing model performance. Altitude, precipitation of warmest quarter, mean temperature of coldest quarter, and land cover provided a total contribution of 19.5%. Based on the model predictions, X. fastidiosa has a high probability (> 0.8) of colonizing areas characterized by: i) low altitude (0–150 m a.s.l.); ii) precipitations in the driest month < 10 mm, in the wettest month ranging between 80–110 mm and during the warmest quarter < 60 mm; iii) mean temperature of coldest quarter ≥ 8°C; iv) agricultural areas comprising intensive agriculture, complex cultivation patterns, olive groves, annual crops associated with permanent crops, orchards and vineyards; forest (essentially oak woodland); and Mediterranean shrubland. Species distribution models showed a high probability of X. fastidiosa occurrence in the regions of Apulia, Calabria, Basilicata, Sicily, Sardinia and coastal areas of Campania, Lazio and south Tuscany. Maxent models achieved excellent levels of predictive performance according to area under curve (AUC), true skill statistic (TSS) and minimum difference between training and testing AUC data (AUCdiff). Our study indicated that X. fastidiosa has the potential to overcome the current boundaries of distribution and affect areas of Italy outside Apulia

    Expanding or shrinking? range shifts in wild ungulates under climate change in Pamir-Karakoram mountains, Pakistan

    Get PDF
    Climate change is expected to impact a large number of organisms in many ecosystems, including several threatened mammals. A better understanding of climate impacts on species can make conservation efforts more effective. The Himalayan ibex (Capra ibex sibirica) and blue sheep (Pseudois nayaur) are economically important wild ungulates in northern Pakistan because they are sought-after hunting trophies. However, both species are threatened due to several human-induced factors, and these factors are expected to aggravate under changing climate in the High Himalayas. In this study, we investigated populations of ibex and blue sheep in the Pamir-Karakoram mountains in order to (i) update and validate their geographical distributions through empirical data; (ii) understand range shifts under climate change scenarios; and (iii) predict future habitats to aid long-term conservation planning. Presence records of target species were collected through camera trapping and sightings in the field. We constructed Maximum Entropy (MaxEnt) model on presence record and six key climatic variables to predict the current and future distributions of ibex and blue sheep. Two representative concentration pathways (4.5 and 8.5) and two-time projections (2050 and 2070) were used for future range predictions. Our results indicated that ca. 37% and 9% of the total study area (Gilgit-Baltistan) was suitable under current climatic conditions for Himalayan ibex and blue sheep, respectively. Annual mean precipitation was a key determinant of suitable habitat for both ungulate species. Under changing climate scenarios, both species will lose a significant part of their habitats, particularly in the Himalayan and Hindu Kush ranges. The Pamir-Karakoram ranges will serve as climate refugia for both species. This area shall remain focus of future conservation efforts to protect Pakistan’s mountain ungulates

    Quantum gravity phenomenology at the dawn of the multi-messenger era—A review

    Get PDF
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.publishedVersio
    • …
    corecore