17 research outputs found

    Mapping shallow groundwater salinity in a coastal urban setting to assess exposure of municipal assets

    Get PDF
    Study region: Christchurch, New Zealand. Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km2 ), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management

    Christchurch shallow groundwater quality survey dataset

    Get PDF
    Shallow groundwater quality and level across the low-lying coastal city of Christchurch, New Zealand were surveyed at a high spatial resolution (1.3 piezometers/km²) in the spring of 2020. The groundwater quality parameters recorded across 99 piezometers include specific conductance, temperature, pH, and dissolved oxygen, following the pumping of approximately three bore volumes. Additionally, 27 out of 99 piezometers were analysed for chloride concentration and alkalinity as calcium carbonate. This dataset is useful to explore shallow groundwater conditions and how these might impact co-existing subsurface infrastructure and ecosystems. Furthermore, this dataset provides a valuable point of comparison against future changes, for example due to increased seawater intrusion, pollution events, or groundwater level rise

    Mapping shallow groundwater salinity in a coastal urban setting to assess exposure of municipal assets

    Get PDF
    Study region: Christchurch, New Zealand. Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km²), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management

    Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands.

    No full text
    In 2011 the first recorded bleaching event for the high latitude Houtman Abrolhos Islands (HAI) coral communities was documented. This bleaching event highlighted the question of whether a supply of 'heat tolerant' coral recruits from the tropical north would be sufficient to provide a level of resistance for these reefs to future warming events. Using Lagrangian modelling we showed that due to its regional isolation, large-scale larval input from potential tropical northern source populations to the HAI is unlikely, despite the southward flowing Leeuwin current. Successful recruitment to artificial substrates was recorded following the bleaching event. However, this was negligible (0.4 ± 0.1 recruits per tile) compared to 2013 post impact recruitment (128.8 ± 15.8 recruits per tile). Our data therefore provides preliminary evidence suggesting that the connectivity of the HAI with coral communities in the north is limited, and population maintenance and recovery is likely driven primarily by self-recruitment. Given the low thermal tolerance of the HAI coral communities, the dominance of Acropora, and the apparent reliance on self-recruitment, an increased frequency of thermally anomalous conditions at the HAI (such as experienced in 2011) has the potential to reduce the long-term stability of the HAI coral populations and species that depend upon them

    Dinoflagellate diversity among nudibranchs and sponges from French Polynesia : insights into associations and transfer

    No full text
    Symbioses with the dinoflagellate Symbiodinium are widespread among marine invertebrates and protists, especially in nutritionally demanding habitats, such as tropical coral reefs, where they play a major role in ecosystem survival. Moreover, apart from corals and sea anemones, many of the Symbiodinium species and clades involved in these partnerships remain to be characterized. This study provides new insights into nudibranch and sponge associations with Symbiodinium by sequencing regions of the Symbiodinium 28S rDNA and the host mitochondrial COI oxidase. Specimens were sampled between 2011 and 2013 from locations around the islands of Moorea and Tahiti, French Polynesia. Our results revealed that some of the sponges and nudibranchs harbored typical Symbiodinium from clade B or C while others harbored new, undescribed Symbiodiniurn-like dinoflagellates. A detailed analysis of the different life stages of the nudibranch Phestilla lugubris and of its specific coral prey, Porites rus, suggests a prey-predator horizontal transfer of the symbiont and its vertical inheritance from the parent to the eggs

    a) Location of potential northern seeding reefs and the HAI used in the dispersal modelling b) Simulated larval arrivals from the potential northern seeding reefs to the HAI in 2010 and in c) 2011.

    No full text
    <p>a) Location of potential northern seeding reefs and the HAI used in the dispersal modelling b) Simulated larval arrivals from the potential northern seeding reefs to the HAI in 2010 and in c) 2011.</p

    a) NOAA Sea surface temperature data from 2010–2013. Note 2010 represents a typical temperature profile for HAI, unlike the anomalous temperatures seen in 2011. b) Average number of coral recruits tile<sup>-1</sup> (± Standard Error) at the HAI following the autumn mass spawning from 2011–2013.

    No full text
    <p>a) NOAA Sea surface temperature data from 2010–2013. Note 2010 represents a typical temperature profile for HAI, unlike the anomalous temperatures seen in 2011. b) Average number of coral recruits tile<sup>-1</sup> (± Standard Error) at the HAI following the autumn mass spawning from 2011–2013.</p

    Does trophic level drive organic and metallic contamination in coral reef organisms?

    Get PDF
    International audienceMetallic and organic pollutants constitute a serious threat for coral reef ecosystems, potentially affecting a great number of species interacting within complex trophodynamic processes. Pesticides, PCBs and trace elements were measured on coral reef communities of three Pacific islands (Moorea, Wallis and New Caledonia) in relation with d15N values, a proxy of trophic level. Several potential sources of organic matter, benthic invertebrates and fish belonging to various trophic strategies were sampled at each island. Wallis and New Caledonia displayed, respectively, the highest concentrations of pesticides and trace elements. In the three islands, most trace element concentrations (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and V) decreased when d15N was rising (i.e. bioreduction), whereas Hg and Se biomagnified with increasing d15N values. Only few trace elements in some islands did not show any significant trend in relation with d15N (i.e., Ag in New Caledonia, Zn in Wallis and As plus Zn in Moorea). PCBs concentrations showed a significant bioreduction in New Caledonia and in Moorea, but a significant biomagnification in Wallis. Aldrin and heptachlor were the only pesticides to show a similar significant bioreduction in the three islands. Other pesticides, such as chlordecone, diazinon, endosulfan I and II, heptachlor-epoxide A and B, lindane and pp’-DDE displayed contrasted patterns (e.g. chlordecone significantly biomagnified in New Caledonia, significantly bioreduced in Wallis and did not displayed any significant trend in Moorea). Finally, for unclear reasons, Moorea displayed only negative significant correlations between d15N and all pesticides (except pp’-DDT). Our results highlight that trophic level, here assessed through d15N values, is a good predictor of metallic trace elements biomagnification or bioreduction in coral reef organisms. However, at large spatial scale, trophic level relevance to predict pesticides and PCBs biomagnification or bioreduction should be considered with caution and studied in close relation with local characteristics
    corecore