1,260 research outputs found

    Apparent superluminal advancement of a single photon far beyond its coherence length

    Full text link
    We present experimental results relative to superluminal propagation based on a single photon traversing an optical system, called 4f-system, which acts singularly on the photon's spectral component phases. A single photon is created by a CW laser light down{conversion process. The introduction of a linear spectral phase function will lead to the shift of the photon peak far beyond the coherence length of the photon itself (an apparent superluminal propagation of the photon). Superluminal group velocity detection is done by interferometric measurement of the temporal shifted photon with its correlated untouched reference. The observed superluminal photon propagation complies with causality. The operation of the optical system allows to enlighten the origin of the apparent superluminal photon velocity. The experiment foresees a superluminal effect with single photon wavepackets.Comment: 11 pages, 2 figure

    Stretching stenoses of the external auditory canal: a report of four cases and brief review of the literature

    Get PDF
    Acquired stenosis of the external auditory canal may be caused by a variety of insults, all sharing a common pathogenesis, namely a cascade of inflammatory changes leading to medial canal fibrosis. Previous surgery (canaloplasty or meatoplasty) and radiotherapy, especially if associated with a history of parotid surgery extended to the external auditory canal, have been implicated as possible causes. The literature offers advice on the management of stenosis consequent to otosurgery for congenital and acquired defects, but nothing on forms secondary to radiotherapy to the head and neck region. The proposed solutions are often cumbersome and difficult to fabricate, and therefore expensive. The aim of this paper, in which the cases of four patients are reported, is to present a new technique initially used for the most severe form - i.e. external auditory canal stenosis after surgery and radiotherapy - and then extended to forms due to different causes. This new technique involves the use of a series of surgical steel tubes of increasing dimension commonly used for tissue expansion in a body piercing practice called stretching and known as ear stretching tunnels or ear stretchers. This innovative approach proved effective in solving external auditory canal stenosis in our patients, with the least discomfort for the patient and the lowest cost. We consider this new solution to be feasible and practical and are convinced that it provides a new approach to an old problem. Further studies are needed to increase the number of clinical cases to verify how long the ear stretcher should be kept in place for the stenosis to stabilise, and to establish whether surgery is always necessary after ear stretcher application and, if so, the best timing for surgery

    Sub-picosecond compression by velocity bunching in a photo-injector

    Get PDF
    We present an experimental evidence of a bunch compression scheme that uses a traveling wave accelerating structure as a compressor. The bunch length issued from a laser-driven radio-frequency electron source was compressed by a factor >3 using an S-band traveling wave structure located immediately downstream from the electron source. Experimental data are found to be in good agreement with particle tracking simulations.Comment: 19 pages, 9 figures, submitted to Phys. Rev. Spec. Topics A&

    Nano-antenna array for high efficiency sunlight harvesting

    Get PDF
    none5noSolar rectennas are promising devices for energy harvesting. Capability of rectennas to convert incident light into useful energy depends on the antenna efficiency, that is the ratio between the power transferred to the load vs the incoming power. In this work, we first emphasize that for the efficiency to be calculated accurately, antennas need to be treated as receiving devices, not as transmitting ones. Then, we propose an arrangement of antennas that differs from those published so far in three respects: (1) the proposed arrangement is formed by an array of nano-antennas with sub-wavelength inter-element spacing, (2) it comprises a reflecting mirror, and (3) it allows for dual polarization operation. Through numerical simulations, we show that the small lattice pitch we use is responsible for frequency flattening of the lattice impedance over the whole solar spectrum, eventually allowing for excellent matching with the antennas’ loads. Also, the small pitch allows for a smooth dependence of the receiving efficiency on the angle of incidence of sunlight. Finally, we show numerically that the reflecting mirror also allows for an almost complete cancellation of light scattered by the receiving antennas. The final result is a polarization insensitive receiving theoretical efficiency larger than 70% over the whole 300-3000 nm spectral range, with a less than 10% energy wasting due to back-scattering of sunlight.openMidrio M.; Pierantoni L.; Boscolo S.; Truccolo D.; Mencarelli D.Midrio, M.; Pierantoni, L.; Boscolo, S.; Truccolo, D.; Mencarelli, D

    Combined effects of electromagnetic fields on immune and nervous responses.

    Get PDF
    In technologically developed countries, there is concern about hazards from electromagnetic fields (EMFs). Several studies have reported that immune and neuroendocrine systems exert an integrated response to EMF exposure. The aim of this review is to summarize the results of studies on the effect of low and high frequency EMF on immune and neuroendocrine systems on which our research group has been working for several years

    Enhanced nonlinear spectral compression in fiber by external sinusoidal phase modulation

    Get PDF
    We propose a new, simple approach to enhance the spectral compression process arising from nonlinear pulse propagation in an optical fiber. We numerically show that an additional sinusoidal temporal phase modulation of the pulse enables efficient reduction of the intensity level of the side lobes in the spectrum that are produced by the mismatch between the initial linear negative chirp of the pulse and the self-phase modulation-induced nonlinear positive chirp. Remarkable increase of both the extent of spectrum narrowing and the quality of the compressed spectrum is afforded by the proposed approach across a wide range of experimentally accessible parameters

    Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells.

    Get PDF
    Our understanding of Alzheimer's disease pathogenesis is currently limited by difficulties in obtaining live neurons from patients and the inability to model the sporadic form of the disease. It may be possible to overcome these challenges by reprogramming primary cells from patients into induced pluripotent stem cells (iPSCs). Here we reprogrammed primary fibroblasts from two patients with familial Alzheimer's disease, both caused by a duplication of the amyloid-β precursor protein gene (APP; termed APP(Dp)), two with sporadic Alzheimer's disease (termed sAD1, sAD2) and two non-demented control individuals into iPSC lines. Neurons from differentiated cultures were purified with fluorescence-activated cell sorting and characterized. Purified cultures contained more than 90% neurons, clustered with fetal brain messenger RNA samples by microarray criteria, and could form functional synaptic contacts. Virtually all cells exhibited normal electrophysiological activity. Relative to controls, iPSC-derived, purified neurons from the two APP(Dp) patients and patient sAD2 exhibited significantly higher levels of the pathological markers amyloid-β(1-40), phospho-tau(Thr 231) and active glycogen synthase kinase-3β (aGSK-3β). Neurons from APP(Dp) and sAD2 patients also accumulated large RAB5-positive early endosomes compared to controls. Treatment of purified neurons with β-secretase inhibitors, but not γ-secretase inhibitors, caused significant reductions in phospho-Tau(Thr 231) and aGSK-3β levels. These results suggest a direct relationship between APP proteolytic processing, but not amyloid-β, in GSK-3β activation and tau phosphorylation in human neurons. Additionally, we observed that neurons with the genome of one sAD patient exhibited the phenotypes seen in familial Alzheimer's disease samples. More generally, we demonstrate that iPSC technology can be used to observe phenotypes relevant to Alzheimer's disease, even though it can take decades for overt disease to manifest in patients

    Application of Ferroelectric Cathodes to Enhance the Ion Yield in the Caesar Source at LNS

    Get PDF
    With increasing RF power the electron concentration in the plasma of ECR ion sources is decreasing in comparison to the ion concentration, so that the plasma is charging up positively. Direct injection of electrons into the ECR plasma can increase the electron charge density and the ion current yield. We have used ferroelectric cathodes to inject electrons into the Argon plasma of the CAESAR ion source at INFN-LNS (Catania, Italy). The cathode was placed at about 10 cm from the hot plasma and a bipolar high voltage pulse of 1.6 kV was used to trigger the electron emission. No additional acceleration has been provided. The use of the ferroelectric cathode leads to an increase of about 30% of the Ar8+ intensity, which has been monitored during the test. In addition, magneto-hydrodynamic instabilities in the ECR source were damped during and after electron injection
    • …
    corecore