77 research outputs found

    Investigation on the role of red fox in tuberculosis maintenance community ΒΏ second opus: experimental infection with a virulent field Mycobacterium bovis strain

    Get PDF
    Trabajo presentado al: 69th Wildlife Disease Association and 14th European Wildlife Disease Association Conference. Cuenca, Spain. p. 135. 31 agosto-2 septiembre

    Discovery of a polyomavirus in European badgers (Meles meles) and the evolution of host range in the family Polyomaviridae.

    Get PDF
    Polyomaviruses infect a diverse range of mammalian and avian hosts, and are associated with a variety of symptoms. However, it is unknown whether the viruses are found in all mammalian families and the evolutionary history of the polyomaviruses is still unclear. Here, we report the discovery of a novel polyomavirus in the European badger (Meles meles), which to our knowledge represents the first polyomavirus to be characterized in the family Mustelidae, and within a European carnivoran. Although the virus was discovered serendipitously in the supernatant of a cell culture inoculated with badger material, we subsequently confirmed its presence in wild badgers. The European badger polyomavirus was tentatively named Meles meles polyomavirus 1 (MmelPyV1). The genome is 5187 bp long and encodes proteins typical of polyomaviruses. Phylogenetic analyses including all known polyomavirus genomes consistently group MmelPyV1 with California sea lion polyomavirus 1 across all regions of the genome. Further evolutionary analyses revealed phylogenetic discordance amongst polyomavirus genome regions, possibly arising from evolutionary rate heterogeneity, and a complex association between polyomavirus phylogeny and host taxonomic groups

    MyD88 and STING Signaling Pathways Are Required for IRF3-Mediated IFN-Ξ² Induction in Response to Brucella abortus Infection

    Get PDF
    Type I interferons (IFNs) are cytokines that orchestrate diverse immune responses to viral and bacterial infections. Although typically considered to be most important molecules in response to viruses, type I IFNs are also induced by most, if not all, bacterial pathogens. In this study, we addressed the role of type I IFN signaling during Brucella abortus infection, a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. Herein, we have shown that B. abortus induced IFN-Ξ² in macrophages and splenocytes. Further, IFN-Ξ² induction by Brucella was mediated by IRF3 signaling pathway and activates IFN-stimulated genes via STAT1 phosphorylation. In addition, IFN-Ξ² expression induced by Brucella is independent of TLRs and TRIF signaling but MyD88-dependent, a pathway not yet described for Gram-negative bacteria. Furthermore, we have identified Brucella DNA as the major bacterial component to induce IFN-Ξ² and our study revealed that this molecule operates through a mechanism dependent on RNA polymerase III to be sensed probably by an unknown receptor via the adaptor molecule STING. Finally, we have demonstrated that IFN-Ξ±Ξ²R KO mice are more resistant to infection suggesting that type I IFN signaling is detrimental to host control of Brucella. This resistance phenotype is accompanied by increased IFN-Ξ³ and NO production by IFN-Ξ±Ξ²R KO spleen cells and reduced apoptosis

    Genome Degradation in Brucella ovis Corresponds with Narrowing of Its Host Range and Tissue Tropism

    Get PDF
    Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis

    An Anomalous Type IV Secretion System in Rickettsia Is Evolutionarily Conserved

    Get PDF
    Bacterial type IV secretion systems (T4SSs) comprise a diverse transporter family functioning in conjugation, competence, and effector molecule (DNA and/or protein) translocation. Thirteen genome sequences from Rickettsia, obligate intracellular symbionts/pathogens of a wide range of eukaryotes, have revealed a reduced T4SS relative to the Agrobacterium tumefaciens archetype (vir). However, the Rickettsia T4SS has not been functionally characterized for its role in symbiosis/virulence, and none of its substrates are known.Superimposition of T4SS structural/functional information over previously identified Rickettsia components implicate a functional Rickettsia T4SS. virB4, virB8 and virB9 are duplicated, yet only one copy of each has the conserved features of similar genes in other T4SSs. An extraordinarily duplicated VirB6 gene encodes five hydrophobic proteins conserved only in a short region known to be involved in DNA transfer in A. tumefaciens. virB1, virB2 and virB7 are newly identified, revealing a Rickettsia T4SS lacking only virB5 relative to the vir archetype. Phylogeny estimation suggests vertical inheritance of all components, despite gene rearrangements into an archipelago of five islets. Similarities of Rickettsia VirB7/VirB9 to ComB7/ComB9 proteins of epsilon-proteobacteria, as well as phylogenetic affinities to the Legionella lvh T4SS, imply the Rickettsiales ancestor acquired a vir-like locus from distantly related bacteria, perhaps while residing in a protozoan host. Modern modifications of these systems likely reflect diversification with various eukaryotic host cells.We present the rvh (Rickettsiales vir homolog) T4SS, an evolutionary conserved transporter with an unknown role in rickettsial biology. This work lays the foundation for future laboratory characterization of this system, and also identifies the Legionella lvh T4SS as a suitable genetic model

    Detection of conjugation related type four secretion machinery in Aeromonas culicicola

    Get PDF
    BACKGROUND: Aeromonas sp. can now be considered relatively common enteropathogens due to the increase of diseases in humans. Aeromonas culicicola is a gram negative rod-shaped bacterium isolated for the first time from the mosquito mid-gut, but subsequently detected in other insects and waters also. Our previous study discovered that A. culicicola harbors three plasmids, which we designated as pAc3249A, pAc3249B and pAc3249C. We investigated and report here the existence and genetic organization of a Conjugal Type IV Secretion System (TFSS) in pAc3249A. METHODOLOGY/PRINCIPLE FINDING: The complete operon is 11,061 bp in length and has G+C content of 47.20% code for 12 ORFs. The gene order and orientation were similar to those found in other bacteria with some differences. We have designated this system as AcTra for Aeromonas culicicola transfer system. BLAST results of ORFs and phylogenetic analysis showed significant similarity towards the respective proteins of the IncI2 plasmid R721 of E. coli. Other bioinformatics studies have been performed to predict conserved motifs/domains, signal peptides, transmembrane helices, etc. of the ORFs. CONCLUSIONS/SIGNIFICANCE: BLAST results of ORFs and phylogenetic analysis showed significant similarity towards the respective proteins of the IncI2 plasmid R721 of E. coli

    A comparison of local parametric C0 Bézier interpolants for triangular meshes

    No full text
    Parametric curved shape surface schemes interpolating vertices and normals of a given triangular mesh with arbitrary topology are widely used in computer graphics for gaming and real-time rendering due to their ability to effectively represent any surface of arbitrary genus. In this context, continuous curved shape surface schemes using only the information related to the triangle corresponding to the patch under construction, emerged as attractive solutions responding to the requirements of resource-limited hardware environments. In this paper we provide a unifying comparison of the local parametric C0 curved shape schemes we are aware of, based on a reformulation of their original constructions in terms of polynomial B\ue9zier triangles. With this reformulation we find a geometric interpretation of all the schemes that allows us to analyse their strengths and shortcomings from a geometrical point of view. Further, we compare the four schemes with respect to their computational costs, their reproduction capabilities of analytic surfaces and their response to different surface interrogation methods on arbitrary triangle meshes with a low triangle count that actually occur in their real-world use

    Un survol des méthodes d’interpolation de maillages triangulaires G1-continues par blend rationnel

    No full text
    Parametric schemes based on B\ue9zier triangles interpolating vertices and normals of a given triangular mesh with arbitrary topology are widely used in computer graphics due to their ability to effectively represent any surface of arbitrary genus. In this paper, we provide a comparison of the local parametric G1 schemes that use rational blends to construct the surface avoiding the vertex consistency problem. We tested all the considered schemes by using different surface interrogation methods when applied to arbitrary triangle meshes with a low triangle count, as it actually occurs in their real-world use.Depuis la fin des ann\ue9es 1980, le probl\ue8me de l\u2019interpolation param\ue9trique de points et de normales sur des maillages triangulaires a \ue9t\ue9 \ue9tudi\ue9e afin de mod\ue9liser des surfaces de topologie arbitraire. En particulier, l\u2019interpolation locale par des facettes param\ue9triques triangulaires et non-planes est un sujet d\u2019actualit\ue9 en raison de la difficult\ue9 d\u2019obtenir des formes lisses et sans ondulations. Plusieurs m\ue9thodes pour la construction de deux patches qui se rejoignent avec continuit\ue9 G1 existent. Malheureusement, quand on consid\ue8re un ensemble de patches on doit traiter le vertex consistency problem. Diff\ue9rentes techniques ont \ue9t\ue9 d\ue9velopp\ue9es. Une premi\ue8re classe de m\ue9thodes contourne le probl\ue8me en \ue9vitant de r\ue9soudre le syst\ue8me lin\ue9aire associ\ue9, tandis qu'une deuxi\ue8me classe de m\ue9thodes impose des contraintes afin de rendre le syst\ue8me r\ue9soluble. Dans cet article nous pr\ue9sentons un survol de trois m\ue9thodes r\ue9cemment d\ue9velopp\ue9es de la premi\ue8re cat\ue9gorie qui utilisent une technique appel\ue9e blend rationnel pour la cr\ue9ation de la surface. Nous comparons les diff\ue9rentes surfaces construites par les m\ue9thodes consid\ue9r\ue9es pour des maillages grossiers qui caract\ue9risent en fait leurs utilisations concr\ue8tes
    • …
    corecore