85 research outputs found

    Catching wind of non-invasive biomarkers for inflammatory bowel disease and colorectal cancer

    Get PDF

    Intergrading reef communities across discrete seaweed habitats in a temperate–tropical transition zone:Lessons for species reshuffling in a warming ocean

    Get PDF
    Temperate reefs are increasingly affected by the direct and indirect effects of climate change. At many of their warm range edges, cool‐water kelps are decreasing, while seaweeds with warm‐water affinities are increasing. These habitat‐forming species provide different ecological functions, and shifts to warm‐affinity seaweeds are expected to modify the structure of associated communities. Predicting the nature of such shifts at the ecosystem level is, however, challenging, as they often occur gradually over large geographical areas. Here, we take advantage of a climatic transition zone, where cool‐affinity (kelp) and warm‐affinity (Sargassum) seaweed forests occur adjacently under similar environmental conditions, to test whether these seaweed habitats support different associated seaweed, invertebrate, coral, and fish assemblages. We found clear differences in associated seaweed assemblages between habitats characterized by kelp and Sargassum abundance, with kelp having higher biomass and seaweed diversity and more cool‐affinity species than Sargassum habitats. The multivariate invertebrate and fish assemblages were not different between habitats, despite a higher diversity of fish species in the Sargassum habitat. No pattern in temperature affinity of the invertebrate or fish assemblages in each habitat was found, and few fish species were exclusive to one habitat or the other. These findings suggest that, as ocean warming continues to replace kelps with Sargassum, the abundance and diversity of associated seaweeds could decrease, whereas fish could increase. Nevertheless, the more tropicalized seaweed habitats may provide a degree of functional redundancy to associated fauna in temperate seaweed habitats

    Optimized sampling conditions for fecal volatile organic compounds analysis by means of field asymmetric ion mobility spectrometry

    Get PDF
    Background Fecal volatile organic compounds (VOCs) are increasingly considered as potential non-invasive, diagnostic biomarkers for various gastrointestinal diseases. Knowledge of influence of sampling conditions on VOC outcomes is limited. We aimed to evaluate effects of sampling conditions on fecal VOC profiles and to assess under which conditions an optimal diagnostic accuracy in the discrimination between pediatric inflammatory bowel disease (IBD) and controls could be obtained. Methods Fecal samples from de novo treatment-naĂŻve pediatric IBD patients and healthy controls (HC) were used to assess effects of sampling conditions compared to the standard operating procedure (reference standard), defined as 500mg of sample mass, diluted with 10mL tap water, using field asymmetric ion mobility spectrometry (FAIMS). Results A total of 17 IBD (15CD and 2 UC) and 25 HC were included. IBD and HC could be discriminated with high accuracy (accuracy=0.93, AUC=0.99, p<0.0001). Smaller fecal sample mass resulted in a decreased diagnostic accuracy (300mg accuracy=0.77; AUC=0.69, p=0.02; 100mg accuracy=0.70, AUC=0.74, p=0.003). A loss of diagnostic accuracy was seen towards increased numbers of thaw-freeze cycles (one cycle: accuracy=0.61, AUC=0.80, p=0.0004, two cycles: accuracy=0.64, AUC=0.56, p=0.753, three cycles: accuracy=0.57, AUC=0.50, p=0.5101) and when samples were kept at room temperature for 180 minutes prior to analysis (accuracy=0.60, AUC=0.51, p=0.46). Diagnostic accuracy of VOC profiles was not significantly influenced by storage duration differences of 20 months. Conclusion Application of 500mg sample mass analyzed after one thaw-freeze cycle, showed best discriminative accuracy for differentiation of IBD and HC. VOC profiles and diagnostic accuracy were significantly affected by sampling conditions, underlining the need for implementation of standardized protocols in fecal VOC analysis

    Differentiation between pediatric irritable bowel syndrome and inflammatory bowel disease based on fecal scent : proof of principle study

    Get PDF
    The diagnostic work-up of pediatric irritable bowel syndrome (IBS) and functional abdominal pain-not otherwise specified (FAP-NOS) commonly includes invasive tests for discrimination from inflammatory bowel disease (IBD). As this carries a high burden on patients, an ongoing need exists for development of noninvasive diagnostic biomarkers for IBS and FAP-NOS. Several studies have shown microbiota alterations in IBS/FAP, which are considered to be reflected by fecal volatile organic compounds (VOCs). The object of the study was to evaluate whether pediatric IBS/FAP-NOS could be discriminated from IBD and healthy controls by fecal VOC analysis. IBS/FAP-NOS was diagnosed according to the ROME IV criteria, and de novo IBD patients and healthy controls (HCs) aged 4 to 17 years were matched on age and sex. Fecal VOCs were analyzed by means of field asymmetric ion mobility spectrometry. Fecal VOCs of 15 IBS/FAP-NOS, 30 IBD (15 ulcerative colitis, 15 Crohn's disease) patients and 30 HCs were analyzed and compared. Differentiation between IBS/FAP-NOS and IBD was feasible with high accuracy (area under the curve [AUC], 0.94; 95% confidence interval [CI], 0.88-1; P < 0.00001). IBS/FAP-NOS profiles could not be differentiated from HCs (AUC, 0.59; 95% CI, 0.41-0.77; P = 0.167), whereas IBD profiles could with high accuracy (AUC, 0.96; 95% CI, 0.93-1; P < 0.00001). Pediatric IBS/FAP-NOS could be differentiated from IBD by fecal VOC analysis with high accuracy, but not from healthy controls. The latter finding limits the potential of fecal VOCs to serve as a diagnostic biomarker for IBS/FAP-NOS. However, VOC could possibly serve as additional noninvasive biomarker to differentiate IBS/FAP-NOS from IBD

    Small heat-shock protein HSPB1 mutants stabilize microtubules in Charcot-Marie-Tooth neuropathy

    Get PDF
    Mutations in the small heat shock protein HSPB1 (HSP27) are causative for Charcot-Marie-Tooth (CMT) neuropathy. We previously showed that a subset of these mutations displays higher chaperone activity and enhanced affinity to client proteins. We hypothesized that this excessive binding property might cause the HSPB1 mutant proteins to disturb the function of proteins essential for the maintenance or survival of peripheral neurons. In the present work, we explored this hypothesis further and compared the protein complexes formed by wild-type and mutant HSPB1. Tubulin came out as the most striking differential interacting protein, with hyperactive mutants binding more strongly to both tubulin and microtubules. This anomalous binding leads to a stabilization of the microtubule network in a microtubule-associated protein-like manner as reflected by resistance to cold depolymerization, faster network recovery after nocodazole treatment, and decreased rescue and catastrophe rates of individual microtubules. In a transgenic mouse model for mutant HSPB1 that recapitulates all features of CMT, we could confirm the enhanced interaction of mutant HSPB1 with tubulin. Increased stability of the microtubule network was also clear in neurons isolated from these mice. Since neuronal cells are particularly vulnerable to disturbances in microtubule dynamics, this mechanism might explain the neuron-specific CMT phenotype caused by HSPB1 mutations

    Simultaneous assessment of urinary and fecal volatile organic compound analysis in De Novo Pediatric IBD

    Get PDF
    Endoscopic evaluation is mandatory in establishing the diagnosis of pediatric inflammatory bowel disease (IBD), but unfortunately carries a high burden on patients. Volatile organic compounds (VOC) have been proposed as alternative, noninvasive diagnostic biomarkers for IBD. The current study aimed to assess and compare the potential of fecal and urinary VOC as diagnostic biomarkers for pediatric IBD in an intention-to-diagnose cohort. In this cohort study, patients aged 4–17 years, referred to the outpatient clinic of a tertiary referral center under suspicion of IBD, were eligible to participate. The diagnosis was established by endoscopic and histopathologic assessment, participants who did not meet the criteria of IBD were allocated to the control group. Participants were instructed to concurrently collect a fecal and urinary sample prior to bowel lavage. Samples were analyzed by means of gas chromatography–ion mobility spectrometry. In total, five ulcerative colitis patients, five Crohn’s disease patients, and ten age and gender matched controls were included. A significant difference was demonstrated for both fecal (p-value, area under the curve; 0.038, 0.73) and urinary (0.028, 0.78) VOC profiles between IBD and controls. Analysis of both fecal and urinary VOC behold equal potential as noninvasive biomarkers for pediatric IBD diagnosis

    Integration of stool microbiota, proteome and amino acid profiles to discriminate patients with adenomas and colorectal cancer

    Get PDF
    BACKGROUND: Screening for colorectal cancer (CRC) reduces its mortality but has limited sensitivity and specificity. Aims We aimed to explore potential biomarker panels for CRC and adenoma detection and to gain insight into the interaction between gut microbiota and human metabolism in the presence of these lesions. METHODS: This multicenter case-control cohort was performed between February 2016 and November 2019. Consecutive patients ≄18 years with a scheduled colonoscopy were asked to participate and divided into three age, gender, body-mass index and smoking status-matched subgroups: CRC (n = 12), adenomas (n = 21) and controls (n = 20). Participants collected fecal samples prior to bowel preparation on which proteome (LC-MS/MS), microbiota (16S rRNA profiling) and amino acid (HPLC) composition were assessed. Best predictive markers were combined to create diagnostic biomarker panels. Pearson correlation-based analysis on selected markers was performed to create networks of all platforms. RESULTS: Combining omics platforms provided new panels which outperformed hemoglobin in this cohort, currently used for screening (AUC 0.98, 0.95 and 0.87 for CRC vs controls, adenoma vs controls and CRC vs adenoma, respectively). Integration of data sets revealed markers associated with increased blood excretion, stress- and inflammatory responses and pointed toward downregulation of epithelial integrity. CONCLUSIONS: Integrating fecal microbiota, proteome and amino acids platforms provides for new biomarker panels that may improve noninvasive screening for adenomas and CRC, and may subsequently lead to lower incidence and mortality of colon cancer

    Prediction of inflammatory bowel disease course based on fecal scent

    Get PDF
    The early prediction of changes in disease state allows timely treatment of patients with inflammatory bowel disease (IBD) to be performed, which improves disease outcome. The aim of this pilot study is to explore the potential of fecal volatile organic compound (VOC) profiles to predict disease course. In this prospective cohort, IBD patients were asked to collect two fecal samples and fill in a questionnaire at set intervals. Biochemically, active disease was defined by FCP ≄ 250 mg/g and remission was defined by FCP 100 mg/g. Clinically, active disease was defined by a Harvey Bradshaw Index (HBI) ≄ 5 for Crohn’s disease or by a Simple Clinical Colitis Activity Index (SCCAI) ≄ 3 for ulcerative colitis. Clinical remission was defined by an HBI 4 or SCCAI ≀ 2. Fecal VOC profiles were measured using gas chromatography-ion mobility spectrometry (GC-IMS). The fecal samples collected first were included for VOC analysis to predict disease state at the following collection. A total of 182 subsequently collected samples met the disease-state criteria. The fecal VOC profiles of samples displaying low FCP levels at the first measurements differed between patients preceding exacerbation versus those who remained in remission (AUC 0.75; p 0.01). Samples with FCP levels at the first time point displayed different VOC profiles in patients preceding remission compared with those whose disease remained active (AUC 0.86; p 0.01). Based on disease activity scores, there were no significant differences in any of the comparisons. Alterations in fecal VOC profiles preceding changes in FCP levels may be useful to detect disease-course alterations at an early stage. This could lead to earlier treatment, decreased numbers of complications, surgery and hospital admission

    RORγt inhibition selectively targets IL-17 producing iNKT and γΎ-T cells enriched in Spondyloarthritis patients

    Get PDF
    Dysregulated IL-23/IL-17 responses have been linked to psoriatic arthritis and other forms of spondyloarthritides (SpA). ROR gamma t, the key Thelperl7 (Th17) cell transcriptional regulator, is also expressed by subsets of innate-like T cells, including invariant natural killer T (iNKT) and gamma delta-T cells, but their contribution to SpA is still unclear. Here we describe the presence of particular ROR gamma t(+)T-be(lo)PLZF(-) iNKT and gamma delta-hi T cell subsets in healthy peripheral blood. ROR gamma t(+) iNKT and gamma delta-hi T cells show IL-23 mediated Th17-like immune responses and were clearly enriched within inflamed joints of SpA patients where they act as major IL-17 secretors. SpA derived iNKT and gamma delta-T cells showed unique and Th17-skewed phenotype and gene expression profiles. Strikingly, ROR gamma t inhibition blocked gamma delta 17 and iNKT17 cell function while selectively sparing IL-22(+) subsets. Overall, our findings highlight a unique diversity of human ROR gamma t(+) T cells and underscore the potential of ROR gamma t antagonism to modulate aberrant type 17 responses

    Mutant HSPB8 causes motor neuron-specific neurite degeneration

    Get PDF
    Missense mutations (K141N and K141E) in the α-crystallin domain of the small heat shock protein HSPB8 (HSP22) cause distal hereditary motor neuropathy (distal HMN) or Charcot-Marie-Tooth neuropathy type 2L (CMT2L). The mechanism through which mutant HSPB8 leads to a specific motor neuron disease phenotype is currently unknown. To address this question, we compared the effect of mutant HSPB8 in primary neuronal and glial cell cultures. In motor neurons, expression of both HSPB8 K141N and K141E mutations clearly resulted in neurite degeneration, as manifested by a reduction in number of neurites per cell, as well as in a reduction in average length of the neurites. Furthermore, expression of the K141E (and to a lesser extent, K141N) mutation also induced spheroids in the neurites. We did not detect any signs of apoptosis in motor neurons, showing that mutant HSPB8 resulted in neurite degeneration without inducing neuronal death. While overt in motor neurons, these phenotypes were only very mildly present in sensory neurons and completely absent in cortical neurons. Also glial cells did not show an altered phenotype upon expression of mutant HSPB8. These findings show that despite the ubiquitous presence of HSPB8, only motor neurons appear to be affected by the K141N and K141E mutations which explain the predominant motor neuron phenotype in distal HMN and CMT2L
    • 

    corecore