18 research outputs found

    Bacteria in the airways of patients with cystic fibrosis are genetically capable of producing VOCs in breath.

    Get PDF
    Breath contains hundreds of volatile organic compounds (VOCs), the composition of which is altered in a wide variety of diseases. Bacteria are implicated in the formation of VOCs, but the biochemical mechanisms that lead to the formation of breath VOCs remain largely hypothetical. We hypothesized that bacterial DNA fragments in sputum of CF patients could be sequenced to identify whether the bacteria present were capable of producing VOCs found in the breath of these patients. Breath from seven patients with cystic fibrosis was sampled and analyzed by gas-chromatography and mass-spectrometry. Sputum samples were also collected and microbial DNA was isolated. Metagenomic sequencing was performed and the DNA fragments were compared to a reference database with genes that are linked to the metabolism of acetaldehyde, ethanol and methanol in the KEGG database. Bacteria in the genera Escherichia, Lactococcus, Pseudomonas, Rothia and Streptococcus were found to have the genetic potential to produce acetaldehyde and ethanol. Only DNA sequences from Lactococcus were implicated in the formation of acetaldehyde from acetate through aldehyde dehydrogenase family 9 member A1 (K00149). Escherichia was found to be genetically capable of producing ethanol in all patients, whilst there was considerable heterogeneity between patients for the other genera. The ethanol concentration in breath positively correlated with the amount of Escherichia found in sputum (Spearman rho  =  0.85,  P  =  0.015). Rothia showed the most versatile genetic potential for producing methanol. To conclude, bacterial DNA fragments in sputum of CF patients can be linked to enzymes implicated in the production of ethanol, acetaldehyde and methanol, which are VOCs that are predictive of respiratory tract colonization and/or infection. This supports that the lung microbiome can produce VOCs directly

    Exhaled breath profiling for diagnosing acute respiratory distress syndrome

    Get PDF
    The acute respiratory distress syndrome (ARDS) is a common, devastating complication of critical illness that is characterized by pulmonary injury and inflammation. The clinical diagnosis may be improved by means of objective biological markers. Electronic nose (eNose) technology can rapidly and non-invasively provide breath prints, which are profiles of volatile metabolites in the exhaled breath. We hypothesized that breath prints could facilitate accurate diagnosis of ARDS in intubated and ventilated intensive care unit (ICU) patients. Prospective single-center cohort study with training and temporal external validation cohort. Breath of newly intubated and mechanically ventilated ICU-patients was analyzed using an electronic nose within 24 hours after admission. ARDS was diagnosed and classified by the Berlin clinical consensus definition. The eNose was trained to recognize ARDS in a training cohort and the diagnostic performance was evaluated in a temporal external validation cohort. In the training cohort (40 patients with ARDS versus 66 controls) the diagnostic model for ARDS showed a moderate discrimination, with an area under the receiver-operator characteristic curve (AUC-ROC) of 0.72 (95%-confidence interval (CI): 0.63-0.82). In the external validation cohort (18 patients with ARDS versus 26 controls) the AUC-ROC was 0.71 [95%-CI: 0.54 - 0.87]. Restricting discrimination to patients with moderate or severe ARDS versus controls resulted in an AUC-ROC of 0.80 [95%-CI: 0.70 - 0.90]. The exhaled breath profile from patients with cardiopulmonary edema and pneumonia was different from that of patients with moderate/severe ARDS. An electronic nose can rapidly and non-invasively discriminate between patients with and without ARDS with modest accuracy. Diagnostic accuracy increased when only moderate and severe ARDS patients were considered. This implicates that breath analysis may allow for rapid, bedside detection of ARDS, especially if our findings are reproduced using continuous exhaled breath profiling. NTR2750, registered 11 February 201

    Composition and diversity analysis of the lung microbiome in patients with suspected ventilator-associated pneumonia.

    Get PDF
    BackgroundVentilator-associated pneumonia (VAP) is associated with high morbidity and health care costs, yet diagnosis remains a challenge. Analysis of airway microbiota by amplicon sequencing provides a possible solution, as pneumonia is characterised by a disruption of the microbiome. However, studies evaluating the diagnostic capabilities of microbiome analysis are limited, with a lack of alignment on possible biomarkers. Using bronchoalveolar lavage fluid (BALF) from ventilated adult patients suspected of VAP, we aimed to explore how key characteristics of the microbiome differ between patients with positive and negative BALF cultures and whether any differences could have a clinically relevant role.MethodsBALF from patients suspected of VAP was analysed using 16s rRNA sequencing in order to: (1) differentiate between patients with and without a positive culture; (2) determine if there was any association between microbiome diversity and local inflammatory response; and (3) correctly identify pathogens detected by conventional culture.ResultsThirty-seven of 90 ICU patients with suspected VAP had positive cultures. Patients with a positive culture had significant microbiome dysbiosis with reduced alpha diversity. However, gross compositional variance was not strongly associated with culture positivity (AUROCC range 0.66-0.71). Patients with a positive culture had a significantly higher relative abundance of pathogenic bacteria compared to those without [0.45 (IQR 0.10-0.84), 0.02 (IQR 0.004-0.09), respectively], and an increased interleukin (IL)-1β was associated with reduced species evenness (rs = - 0.33, p s = 0.28, p = 0.013). Untargeted 16s rRNA pathogen detection was limited by false positives, while the use of pathogen-specific relative abundance thresholds showed better diagnostic accuracy (AUROCC range 0.89-0.998).ConclusionPatients with positive BALF culture had increased dysbiosis and genus dominance. An increased caspase-1-dependent IL-1b expression was associated with a reduced species evenness and increased pathogenic bacterial presence, providing a possible causal link between microbiome dysbiosis and lung injury development in VAP. However, measures of diversity were an unreliable predictor of culture positivity and 16s sequencing used agnostically could not usefully identify pathogens; this could be overcome if pathogen-specific relative abundance thresholds are used

    Microbial volatiles as diagnostic biomarkers of bacterial lung infection in mechanically ventilated patients.

    Get PDF
    BackgroundEarly and accurate recognition of respiratory pathogens is crucial to prevent increased risk of mortality in critically ill patients. Microbial-derived volatile organic compounds (mVOCs) in exhaled breath could be used as non-invasive biomarkers of infection to support clinical diagnosis.MethodsIn this study, we investigated the diagnostic potential of in vitro confirmed mVOCs in the exhaled breath of patients under mechanically ventilation from the BreathDx study. Samples were analysed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS).ResultsPathogens from bronchoalveolar lavage (BAL) cultures were identified in 45/89 patients and S. aureus was the most commonly identified pathogen (n = 15). Out of 19 mVOCs detected in the in vitro culture headspace of four common respiratory pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli), 14 were found in exhaled breath samples. Higher concentrations of two mVOCs were found in the exhaled breath of patients infected with S. aureus compared to those without (3-methylbutanal p ConclusionsThis study demonstrates the capability of using mVOCs to detect the presence of specific pathogen groups with potential to support clinical diagnosis. Although not all mVOCs were found in patient samples within this small pilot study, further targeted and qualitative investigation is warranted using multi-centre clinical studies

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes—an international multicentre retrospective study

    Full text link
    Background Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to noncancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes:an international multicentre retrospective study

    Get PDF
    Background: Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods: We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings: LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p &lt; 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04–3.34) in the European cohort and 1.6 (1.2–2.2) in the U.S. cohort. Interpretation: We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding: Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.</p

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes:an international multicentre retrospective study

    Get PDF
    Background: Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods: We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings: LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p &lt; 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04–3.34) in the European cohort and 1.6 (1.2–2.2) in the U.S. cohort. Interpretation: We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding: Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.</p

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes:an international multicentre retrospective study

    Get PDF
    Background: Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods: We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings: LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p &lt; 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04–3.34) in the European cohort and 1.6 (1.2–2.2) in the U.S. cohort. Interpretation: We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding: Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.</p

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes:an international multicentre retrospective study

    Get PDF
    Background: Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods: We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings: LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p &lt; 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04–3.34) in the European cohort and 1.6 (1.2–2.2) in the U.S. cohort. Interpretation: We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding: Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.</p

    Distinct clinical phenotypes in paediatric cancer patients with sepsis are associated with different outcomes:an international multicentre retrospective study

    Get PDF
    Background: Identifying phenotypes in sepsis patients may enable precision medicine approaches. However, the generalisability of these phenotypes to specific patient populations is unclear. Given that paediatric cancer patients with sepsis have different host response and pathogen profiles and higher mortality rates when compared to non-cancer patients, we determined whether unique, reproducible, and clinically-relevant sepsis phenotypes exist in this specific patient population. Methods: We studied patients with underlying malignancies admitted with sepsis to one of 25 paediatric intensive care units (PICUs) participating in two large, multi-centre, observational cohorts from the European SCOTER study (n = 383 patients; study period between January 1, 2018 and January 1, 2020) and the U.S. Novel Data-Driven Sepsis Phenotypes in Children study (n = 1898 patients; study period between January 1, 2012 and January 1, 2018). We independently used latent class analysis (LCA) in both cohorts to identify phenotypes using demographic, clinical, and laboratory data from the first 24 h of PICU admission. We then tested the association of the phenotypes with clinical outcomes in both cohorts. Findings: LCA identified two distinct phenotypes that were comparable across both cohorts. Phenotype 1 was characterised by lower serum bicarbonate and albumin, markedly increased lactate and hepatic, renal, and coagulation abnormalities when compared to phenotype 2. Patients with phenotype 1 had a higher 90-day mortality (European cohort 29.2% versus 13.4%, U.S. cohort 27.3% versus 11.4%, p &lt; 0.001) and received more vasopressor and renal replacement therapy than patients with phenotype 2. After adjusting for severity of organ dysfunction, haematological cancer, prior stem cell transplantation and age, phenotype 1 was associated with an adjusted OR of death at 90-day of 1.9 (1.04–3.34) in the European cohort and 1.6 (1.2–2.2) in the U.S. cohort. Interpretation: We identified two clinically-relevant sepsis phenotypes in paediatric cancer patients that are reproducible across two international, multicentre cohorts with prognostic implications. These results may guide further research regarding therapeutic approaches for these specific phenotypes. Funding: Part of this study is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.</p
    corecore