41 research outputs found

    Citizens' perception of the Cohesion Policy and support for the European Union

    Full text link
    Using a novel database, this study assesses the impact of the perception of the personal benefits of the EU Cohesion Policy on support for the European project. The results show that the gap in support between people who claim to have benefited from the Cohesion Policy and those who feel they have not vanished once differences in individual traits and reverse causality are taken into account. This means that, despite the significant positive effect that the intensity of the Cohesion Policy in the region exerts on the perception of the policy, it does not stimulate support for the EU

    Judicial decision-making within political parties: A political approach

    Get PDF
    How do German intra-party tribunals manage internal conflicts? More specifically, why do they accept some cases for trial but reject others? Required by law to strictly adhere to implement rule of law standards, German intra-party tribunals are designed to insulate conflict regulation from politics. Meanwhile, research on judicial politics highlights the role of political and strategic considerations in accepting cases for trial. Building on the latter, we develop a theory that emphasizes tribunals’ political concerns such as winning elections. We test our hypotheses with a mixed-effects logit model on a novel data set covering 1088 tribunal decisions in six German parties from 1967 until 2015. Our findings indicate that political factors exert a strong effect on tribunal case acceptance. Tribunals are more likely to accept cases when suffering electoral loss and after losing government office. Moreover, tribunals dismiss cases more easily when their parties display relatively high levels of policy agreement

    Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes

    Get PDF
    Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening

    The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Worldwide, both the incidence and death rates of pancreatic cancer are increasing. Evaluation of pancreatic cancer burden and its global, regional, and national patterns is crucial to policy making and better resource allocation for controlling pancreatic cancer risk factors, developing early detection methods, and providing faster and more effective treatments. Methods: Vital registration, vital registration sample, and cancer registry data were used to generate mortality, incidence, and disability-adjusted life-years (DALYs) estimates. We used the comparative risk assessment framework to estimate the proportion of deaths attributable to risk factors for pancreatic cancer: smoking, high fasting plasma glucose, and high body-mass index. All of the estimates were reported as counts and age-standardised rates per 100 000 person-years. 95% uncertainty intervals (UIs) were reported for all estimates. Findings: In 2017, there were 448 000 (95% UI 439 000\u2013456 000) incident cases of pancreatic cancer globally, of which 232 000 (210 000\u2013221 000; 51\ub79%) were in males. The age-standardised incidence rate was 5\ub70 (4\ub79\u20135\ub71) per 100 000 person-years in 1990 and increased to 5\ub77 (5\ub76\u20135\ub78) per 100 000 person-years in 2017. There was a 2\ub73 times increase in number of deaths for both sexes from 196 000 (193 000\u2013200 000) in 1990 to 441 000 (433 000\u2013449 000) in 2017. There was a 2\ub71 times increase in DALYs due to pancreatic cancer, increasing from 4\ub74 million (4\ub73\u20134\ub75) in 1990 to 9\ub71 million (8\ub79\u20139\ub73) in 2017. The age-standardised death rate of pancreatic cancer was highest in the high-income super-region across all years from 1990 to 2017. In 2017, the highest age-standardised death rates were observed in Greenland (17\ub74 [15\ub78\u201319\ub70] per 100 000 person-years) and Uruguay (12\ub71 [10\ub79\u201313\ub75] per 100 000 person-years). These countries also had the highest age-standardised death rates in 1990. Bangladesh (1\ub79 [1\ub75\u20132\ub73] per 100 000 person-years) had the lowest rate in 2017, and S\ue3o Tom\ue9 and Pr\uedncipe (1\ub73 [1\ub71\u20131\ub75] per 100 000 person-years) had the lowest rate in 1990. The numbers of incident cases and deaths peaked at the ages of 65\u201369 years for males and at 75\u201379 years for females. Age-standardised pancreatic cancer deaths worldwide were primarily attributable to smoking (21\ub71% [18\ub78\u201323\ub77]), high fasting plasma glucose (8\ub79% [2\ub71\u201319\ub74]), and high body-mass index (6\ub72% [2\ub75\u201311\ub74]) in 2017. Interpretation: Globally, the number of deaths, incident cases, and DALYs caused by pancreatic cancer has more than doubled from 1990 to 2017. The increase in incidence of pancreatic cancer is likely to continue as the population ages. Prevention strategies should focus on modifiable risk factors. Development of screening programmes for early detection and more effective treatment strategies for pancreatic cancer are needed. Funding: Bill & Melinda Gates Foundation

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66–2•79) in 2000 to 2•31 (2•17–2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5–137•8) in 2000 to a peak of 139•6 million (133•0–146•9) in 2016. Global livebirths then declined to 135•3 million (127•2–144•1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2•1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27•1% (95% UI 26•4–27•8) of global livebirths. Global life expectancy at birth increased from 67•2 years (95% UI 66•8–67•6) in 2000 to 73•5 years (72•8–74•3) in 2019. The total number of deaths increased from 50•7 million (49•5–51•9) in 2000 to 56•5 million (53•7–59•2) in 2019. Under-5 deaths declined from 9•6 million (9•1–10•3) in 2000 to 5•0 million (4•3–6•0) in 2019. Global population increased by 25•7%, from 6•2 billion (6•0–6•3) in 2000 to 7•7 billion (7•5–8•0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58•6 years (56•1–60•8) in 2000 to 63•5 years (60•8–66•1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Effects of Notch1 knockdown on the proliferation and the differentiation of human articular chondrocytes

    No full text
    Purpose: Osteoarthritis (OA) is the main degenerative disease of the joint, altering the differentiation pattern of articular chondrocytes. In mouse, Notch signaling is critical regulator of cartilage development and homeostasis. In human, NOTCH1 pathway is overexpressed in OA articular cartilage compared to healthy chondrocytes. Our aim was to investigate if NOTCH1 knockdown could be a potential therapeutic approach in OA. Methods: Primary human OA articular chondrocytes were NOTCH1 silenced by siRNA and cultured in 3D up to 3 weeks. Proliferation was assessed by cell cycle and DNA quantification. Cell viability, catabolic factors release and cell differentiation were also analysed. Results: NOTCH1 silencing reduced active proliferation, but had no effects on senescence and cell cycle regulators. In 3D cultures, mimicking OA progressive differentiation, NOTCH1 silenced cells showed higher viability, reduced differentiation and matrix metalloproteases production. Conclusions : NOTCH1 silenced OA chondrocytes showed a more helthy phenotype, by reducing terminal differentiation and increasing cell viability. NOTCH1 appears a therapeutic target to reduce OA progression

    Glycogen Synthase Kinase-3\uce\ub2 Inhibition Links Mitochondrial Dysfunction, Extracellular Matrix Remodelling and Terminal Differentiation in Chondrocytes

    No full text
    Following inflammatory stimuli, GSK3 inhibition functions as a hub with pleiotropic effects leading to cartilage degradation. However, little is known about the effects triggered by its direct inhibition as well as the effects on mitochondrial pathology, that contributes to osteoarthritis pathogenesis. To this aim we assessed the molecular mechanisms triggered by GSK3\uce\ub2 inactivating stimuli on 3-D (micromass) cultures of human articular chondrocytes. Stimuli were delivered either at micromass seeding (long term) or after maturation (short term) to explore "late" effects on terminal differentiation or "early" mitochondrial effects, respectively. GSK3\uce\ub2 inhibition significantly enhanced mitochondrial oxidative stress and damage and endochondral ossification based on increased nuclear translocation of Runx-2 and \uce\ub2-catenin, calcium deposition, cell death and enhanced remodelling of the extracellular matrix as demonstrated by the increased collagenolytic activity of supernatants, despite unmodified (MMP-1) or even reduced (MMP-13) collagenase gene/protein expression. Molecular dissection of the underlying mechanisms showed that GSK3\uce\ub2 inhibition achieved with pharmacological/silencing strategies impacted on the control of collagenolytic activity, via both decreased inhibition (reduced TIMP-3) and increased activation (increased MMP-10 and MMP-14). To conclude, the inhibition of GSK3\uce\ub2 enhances terminal differentiation via concerted effects on ECM and therefore its activity represents a tool to keep articular cartilage homeostasis
    corecore