132 research outputs found

    A novel non-invasive device for the assessment of central venous pressure in hospital, office and home

    Get PDF
    Background: Venous congestion can be quantified by central venous pressure (CVP) and its monitoring is crucial to understand and follow the hemodynamic status of patients with cardio-respiratory diseases. The standard technique for CVP measurement is invasive, requiring the insertion of a catheter into a jugular vein, with potential complications. On the other hand, the current non-invasive methods, mainly based on ultrasounds, remain operator-dependent and are unsuitable for use in the home environment. In this paper, we will introduce a novel, non-invasive device for the hospital, office and home assessment of CVP. Methods: After describing the measurement concept, we will report a preliminary experimental study enrolling 5 voluntary healthy subjects to evaluate the VenCoM measurements’ repeatability, and the system’s capability in measuring small elicited venous pressure variations (2 mmHg), as well as an induced venous hypertension within a pathological range (12÷20 mmHg). Results: The experimental measurements showed a repeatability of ±1mmHg. The VenCoM device was able to reliably detect the elicited venous pressure variations and the simulated congestive status. Discussion and Conclusion: The proposed non-invasive VenCoM device is able to provide a fast and repeatable CVP estimate, having a wide spectrum of potential clinical applications, including the monitoring of venous congestion in heart failure patients and in subjects with renal and hepatic dysfunction, as well as pulmonary hypertension (PH) that can be extended to pneumonia COVID-19 patients even after recovery. The device needs to be tested further on a large sample size of both healthy and pathological subjects, to systematically validate its reliability and impact in clinical setting

    Comparison of Bone Segmentation Software over Different Anatomical Parts

    Get PDF
    Three-dimensional bone shape reconstruction is a fundamental step for any subject-specific musculo-skeletal model. Typically, medical images are processed to reconstruct bone surfaces via slice-by-slice contour identification. Freeware software packages are available, but commercial ones must be used for the necessary certification in clinics. The commercial software packages also imply expensive hardware and demanding training, but offer valuable tools. The aim of the present work is to report the performance of five commercial software packages (Mimics®, Amira™, D2P™, Simpleware™, and Segment 3D Print™), particularly the time to import and to create the model, the number of triangles of the mesh, and the STL file size. DICOM files of three different computed tomography scans from five different human anatomical areas were utilized for bone shape reconstruction by using each of these packages. The same operator and the same hosting hardware were used for these analyses. The computational time was found to be different between the packages analyzed, probably because of the pre-processing implied in this operation. The longer “time-to-import” observed in one software is likely due to the volume rendering during uploading. A similar number of triangles per megabyte (approximately 20 thousand) was observed for the five commercial packages. The present work showed the good performance of these software packages, with the main features being better than those analyzed previously in freeware packages

    3D Patient-Specific Virtual Models for Presurgical Planning in Patients with Recto-Sigmoid Endometriosis Nodules: A Pilot Study

    Get PDF
    Background and Objective: In recent years, 3D printing has been used to support surgical planning or to guide intraoperative procedures in various surgical specialties. An improvement in surgical planning for recto-sigmoid endometriosis (RSE) excision might reduce the high complication rate related to this challenging surgery. The aim of this study was to build novel presurgical 3D models of RSE nodules from magnetic resonance imaging (MRI) and compare them with intraoperative findings. Materials and Methods: A single-center, observational, prospective, cohort, pilot study was performed by enrolling consecutive symptomatic women scheduled for minimally invasive surgery for RSE between November 2019 and June 2020 at our institution. Preoperative MRI were used for building 3D models of RSE nodules and surrounding pelvic organs. 3D models were examined during multi-disciplinary preoperative planning, focusing especially on three domains: degree of bowel stenosis, nodule's circumferential extension, and bowel angulation induced by the RSE nodule. After surgery, the surgeon was asked to subjectively evaluate the correlation of the 3D model with the intra-operative findings and to express his evaluation as "no correlation", "low correlation", or "high correlation" referring to the three described domains. Results: seven women were enrolled and 3D anatomical virtual models of RSE nodules and surrounding pelvic organs were generated. In all cases, surgeons reported a subjective "high correlation" with the surgical findings. Conclusion: Presurgical 3D models could be a feasible and useful tool to support surgical planning in women with recto-sigmoidal endometriotic involvement, appearing closely related to intraoperative findings

    Insights from calculated phonon dispersion curves for an overlayer of H on Pt(111)

    Full text link
    We have calculated the dispersion curves of H vibrational modes on Pt(111), using first-principles, total energy calculations based on a mixed-basis set and norm-conserving pseudopotentials. Linear response theory and the harmonic approximation are invoked. For 1 ML coverage, H atoms are assumed to occupy the fcc hollow sites. At the Gamma point of the surface Brillouin zone, we find modes, respectively, polarized parallel and perpendicular to the surface at 73.5 meV and 142.6 meV. The degeneracy of the parallel mode is lifted at the zone boundaries, yielding modes at 69.6 meV and 86.3 meV, at the M point, and at 79.4 meV and 80.8 meV, at the K point. The substrate surface modes are also found to shift in frequencies from their calculated values for clean Pt(111). We discuss the details of the changes in surface force constant on H adsorption on Pt(111). We also consider the case of subsurface adsorption for 2 ML of H and present vibrational frequencies of H atoms adsorbed in several subsurface sites. The appearance of new vertically polarized modes in the range of 98 . 106 meV (octahedral site) and 124 . 162 meV (tetrahedral site) is discussed in the context of experimental data

    Non-myogenic mesenchymal cells contribute to muscle degeneration in facioscapulohumeral muscular dystrophy patients

    Get PDF
    Muscle-resident non-myogenic mesenchymal cells play key roles that drive successful tissue regeneration within the skeletal muscle stem cell niche. These cells have recently emerged as remarkable therapeutic targets for neuromuscular disorders, although to date they have been poorly investigated in facioscapulohumeral muscular dystrophy (FSHD). In this study, we characterised the non-myogenic mesenchymal stromal cell population in FSHD patients’ muscles with signs of disease activity, identified by muscle magnetic resonance imaging (MRI), and compared them with those obtained from apparently normal muscles of FSHD patients and from muscles of healthy, age-matched controls. Our results showed that patient-derived cells displayed a distinctive expression pattern of mesenchymal markers, along with an impaired capacity to differentiate towards mature adipocytes in vitro, compared with control cells. We also demonstrated a significant expansion of non-myogenic mesenchymal cells (identified as CD201- or PDGFRA-expressing cells) in FSHD muscles with signs of disease activity, which correlated with the extent of intramuscular fibrosis. In addition, the accumulation of non-myogenic mesenchymal cells was higher in FSHD muscles that deteriorate more rapidly. Our results prompt a direct association between an accumulation, as well as an altered differentiation, of non-myogenic mesenchymal cells with muscle degeneration in FSHD patients. Elucidating the mechanisms and cellular interactions that are altered in the affected muscles of FSHD patients could be instrumental to clarify disease pathogenesis and identifying reliable novel therapeutic targets

    Long-term Follow-up and Muscle Imaging Findings in Brachio-Cervical Inflammatory Myopathy

    Get PDF
    OBJECTIVE: To report on a cohort of patients diagnosed with brachio-cervical inflammatory myopathy (BCIM), with specific focus on muscle MRI and follow-up data. METHODS: Clinical, histopathologic, serologic, and pre- and post-treatment MRI findings of patients diagnosed with BCIM were retrospectively evaluated. RESULTS: Six patients, all females with a mean age at onset of 53 years (range 37-62 years), were identified. Mean diagnostic delay was 17 months, and mean follow-up was 35 months. Most common clinical features encompassed predominant involvement of neck and proximal upper limb muscles, followed by distal upper limb, facial, and bulbar muscle weakness with different severity. Lower limb involvement was rare, although present in severe cases. Muscle biopsies showed a heterogeneous degree of perivascular and endomysial inflammatory changes. Myositis-specific antibodies were absent in all patients, whereas all resulted positive for antinuclear antibodies; half of the patients had anti-acetylcholine receptor antibodies without evidence of muscle fatigability. MRI showed disproportionate involvement of upper girdle and neck muscles compared with lower limbs, with frequent hyperintensities on short-tau inversion recovery sequences. Partial clinical and radiologic improvement with steroid and immunosuppressant therapy was obtained in most patients, especially in proximal upper limb muscles, whereas neck weakness persisted. CONCLUSION: BCIM is an inflammatory myopathy with a peculiar clinical and radiologic presentation and a relatively broad spectrum of severity. Long-term follow-up data suggest that appropriate and early treatment can prevent chronic muscle function impairment. MRI characterization can be helpful in reducing diagnostic and treatment delay with positive consequence on clinical outcome
    • …
    corecore