2,610 research outputs found
Noise in neurons is message-dependent
Neuronal responses are conspicuously variable. We focus on one particular
aspect of that variability: the precision of action potential timing. We show
that for common models of noisy spike generation, elementary considerations
imply that such variability is a function of the input, and can be made
arbitrarily large or small by a suitable choice of inputs. Our considerations
are expected to extend to virtually any mechanism of spike generation, and we
illustrate them with data from the visual pathway. Thus, a simplification
usually made in the application of information theory to neural processing is
violated: noise {\sl is not independent of the message}. However, we also show
the existence of {\sl error-correcting} topologies, which can achieve better
timing reliability than their components.Comment: 6 pages,6 figures. Proceedings of the National Academy of Sciences
(in press
Recommended from our members
WRAITH - A Computer Code for Calculating Internal and External Doses Resulting From An Atmospheric Release of Radioactive Material
WRAITH is a FORTRAN computer code which calculates the doses received by a standard man exposed to an accidental release of radioactive material. The movement of the released material through the atmosphere is calculated using a bivariate straight-line Gaussian distribution model, with Pasquill values for standard deviations. The quantity of material in the released cloud is modified during its transit time to account for radioactive decay and daughter production. External doses due to exposure to the cloud can be calculated using a semi-infinite cloud approximation. In situations where the semi-infinite cloud approximation is not a good one, the external dose can be calculated by a "finite plume" three-dimensional point-kernel numerical integration technique. Internal doses due to acute inhalation are cal.culated using the ICRP Task Group Lung Model and a four-segmented gastro-intestinal tract model. Translocation of the material between body compartments and retention in the body compartments are calculated using multiple exponential retention functions. Internal doses to each organ are calculated as sums of cross-organ doses, with each target organ irradiated by radioactive material in a number of source organs. All doses are calculated in rads, with separate values determined for high-LET and low-LET radiation
A Zero-Gravity Instrument to Study Low Velocity Collisions of Fragile Particles at Low Temperatures
We discuss the design, operation, and performance of a vacuum setup
constructed for use in zero (or reduced) gravity conditions to initiate
collisions of fragile millimeter-sized particles at low velocity and
temperature. Such particles are typically found in many astronomical settings
and in regions of planet formation. The instrument has participated in four
parabolic flight campaigns to date, operating for a total of 2.4 hours in
reduced gravity conditions and successfully recording over 300 separate
collisions of loosely packed dust aggregates and ice samples. The imparted
particle velocities achieved range from 0.03-0.28 m s^-1 and a high-speed,
high-resolution camera captures the events at 107 frames per second from two
viewing angles separated by either 48.8 or 60.0 degrees. The particles can be
stored inside the experiment vacuum chamber at temperatures of 80-300 K for
several uninterrupted hours using a built-in thermal accumulation system. The
copper structure allows cooling down to cryogenic temperatures before
commencement of the experiments. Throughout the parabolic flight campaigns,
add-ons and modifications have been made, illustrating the instrument
flexibility in the study of small particle collisions.Comment: D. M. Salter, D. Hei{\ss}elmann, G. Chaparro, G. van der Wolk, P.
Rei{\ss}aus, A. G. Borst, R. W. Dawson, E. de Kuyper, G. Drinkwater, K.
Gebauer, M. Hutcheon, H. Linnartz, F. J. Molster, B. Stoll, P. C. van der
Tuijn, H. J. Fraser, and J. Blu
On the numerical integration of isogeometric interface elements
Zero-thickness interface elements are commonly used in computational mechanics to model material interfaces or to introduce discontinuities. The latter class requires the existence of a non-compliant interface prior to the onset of fracture initiation. This is accomplished by assigning a high dummy stiffness to the interface prior to cracking. This dummy stiffness is known to introduce oscillations in the traction profile when using Gauss quadrature for the interface elements, but these oscillations are removed when resorting to a Newton-Cotes integration scheme 1. The traction oscillations are aggravated for interface elements that use B-splines or non-uniform rational B-splines as basis functions (isogeometric interface elements), and worse, do not disappear when using Newton-Cotes quadrature. An analysis is presented of this phenomenon, including eigenvalue analyses, and it appears that the use of lumped integration (at the control points) is the only way to avoid the oscillations in isogeometric interface elements. New findings have also been obtained for standard interface elements, for example that oscillations occur in the relative displacements at the interface irrespective of the value of the dummy stiffness
Peripheral arterial disease (PAD) – A challenging manifestation of atherosclerosis
The diagnosis of peripheral arterial disease (PAD) is not always evident as symptoms and signs may show great variation. As all grades of PAD are linked to both an increased risk for cardiovascular complications and adverse limb events, awareness of the condition and knowledge about diagnostic measures, prevention and treatment is crucial. This article presents in a condensed form information on PAD and its management
Investigation of progressive damage and fracture in laminated composites using the smeared crack approach
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97056/1/AIAA2012-1537.pd
- …