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Abstract— We consider a multi-class queueing system operat-
ing under the Discriminatory Processor-Sharing (DPS) discipline.
The DPS discipline provides a natural approach for modeling
the flow-level performance of differentiated bandwidth-sharing
mechanisms. Motivated by the extreme diversity in flow sizes
observed in the Internet, we examine the system performance in
an asymptotic regime where the flow dynamics of the various
classes occur on separate time scales. Specifically, from the
perspective of a given class, the arrival and service completions of
some of the competing classes (called mice) evolve on an extremely
fast time scale. In contrast, the flow dynamics of the remaining
classes (referred to as elephants) occur on a comparatively slow
time scale. Assuming a strict separation of time scales, we obtain
simple explicit expressions for various performance measures
of interest, such as the distribution of the numbers of flows,
mean delays, and flow throughputs. In particular, the latter
performance measures are insensitive, in the sense that they only
depend on the service requirement distributions through their
first moments. Numerical experiments show that the limiting
results provide remarkably accurate approximations in certain
cases1.

I. INTRODUCTION

Over the past few years, the Processor-Sharing (PS) dis-
cipline has been widely adopted as a convenient paradigm
for analyzing the flow-level performance of dynamically inter-
acting TCP transfers [5], [24]. While the PS model provides
valuable insights, it critically relies on the assumption that the
service capacity is shared in an egalitarian manner. The actual
bandwidth shares may however show substantial variation
among competing flows with heterogeneous characteristics.
For instance, TCP flows that share a common bottleneck
link but traverse heterogeneous routes, may experience diverse
packet loss rates and round-trip delays. Because of TCP
mechanics, these differences result in a significant discrepancy
in the bandwidth shares, see for instance [2].

Besides TCP-related effects, the heterogeneity in bandwidth
shares may also be due to deliberate service differentiation

1This work is part of the project EQUANET (End-to-end quality of service
in next generation networks) supported by the Dutch Ministry of Economic
Affairs via its agency SenterNovem.
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among competing flows. As the Internet evolves to support
an ever increasing range of services, there is a growing need
for some form of service differentiation to satisfy the diverse
requirements of heterogeneous applications. The ability to
provide different bandwidth shares is arguably one of the
most fundamental vehicles for service differentiation [9].
Discriminatory scheduling algorithms, such as Weighted Fair
Queueing (WFQ), have been proposed as potential instruments
to implement differentiated bandwidth sharing. Equation-
based and general Additive-Increase Multiplicative-Decrease
(AIMD) rate control algorithms also provide scope for dif-
ferentiated bandwidth sharing [15], [16], [26], [31]. Special
mechanisms of this sort are the algorithms proposed in [20],
[23] for supporting low-priority data transfers by utilizing
excess bandwidth only. This presents an extreme case with
strict precedence between the low-priority transfers and regular
TCP flows.

The Discriminatory Processor-Sharing (DPS) discipline pro-
vides a natural approach for modeling the flow-level perfor-
mance of such differentiated bandwidth-sharing mechanisms.
DPS is a multi-class extension of the ordinary egalitarian PS
policy, where the various classes are assigned positive weight
factors. The service capacity is shared among all users present
in proportion to the respective class-dependent weight factors.
In case all weight factors are equal, the DPS discipline reduces
to the familiar egalitarian PS policy. Note that DPS shows
some resemblance with the Generalized Processor-Sharing
(GPS) discipline (or Generalized Head-Of-the-Line PS), where
the service capacity is also shared in accordance with class-
dependent weight factors. In GPS however, the capacity is not
divided among all users present, but distributed across (non-
empty) classes (e.g. the users at the head-of-the-line of the
various classes), irrespective of the actual number of users
present.

The results for DPS in the literature are surprisingly sparse.
The DPS discipline was first studied by Kleinrock [21] and
O’Donovan [25]. In a seminal paper, Fayolle, Mitrani &
Iasnogorodski [14] obtain the conditional mean sojourn times
as the solution of a system of integro-differential equations.



For the case of exponentially distributed service requirements,
they derive closed-form expressions and also determine the
unconditional mean sojourn times from a system of linear
equations. Rege & Sengupta [27] prove a decomposition the-
orem for the conditional sojourn time. They specifically show
that the sojourn time of a customer which finds n customers
upon arrival can be decomposed into n + 1 independent
components, which can be characterized as the solution of
a system of non-linear integral equations. In a further paper,
Rege & Sengupta [28] obtain the moments of the queue
length from a system of linear equations for the case of
exponentially distributed service requirements. Moreover, they
prove a heavy-traffic limit theorem for the joint queue length
distribution. In recent work, Avrachenkov et al. [3] show that
the mean queue lengths of all classes are finite under the usual
stability condition, regardless of the higher-order moments of
the service requirements. Assuming finite service requirement
distributions with finite variance, they further determine for
each class the asymptote of the conditional sojourn time
distribution.

In the present paper, we investigate the performance of a
DPS system in an asymptotic regime where the flow dynamics
of the various classes occur on widely separate time scales.
Specifically, from the point of view of every individual class,
the interarrival times and service requirements of some of
the competing classes are extremely small. In the limit, a
complete separation of time scales arises, and the arrivals
and service completions of these classes occur at an infinitely
fast relative pace. For the remaining classes, the interarrival
times and service requirements are comparatively large. In
the limit, the flow dynamics of these classes then evolve on
an infinitely slow relative time scale. The disparity in service
characteristics reflects the extreme heterogeneity in flow sizes
observed in the Internet, with a vast majority of short transfers
(‘mice’) and a tiny fraction of huge flows (‘elephants’). The
two limiting scenarios resemble the fluid and quasi-stationary
regimes considered in [8], [13].

Assuming a strict separation of time scales, we derive
simple closed-form results for various performance measures
of interest, such as the distribution of the number of flows,
mean delays, and flow throughputs. The performance experi-
enced by every individual class may be characterized by that
in a corresponding Processor-Sharing system with a reduced
service speed and a random number of permanent customers.
Specifically, the reduction in service speed simply corresponds
to the total load of the mice, and is completely independent
of the values of the DPS weights. The permanent customers
represent the population of elephants encountered by a tagged
flow of the given class, which is random but nearly static
over the course of the sojourn time of an individual flow.
Unlike the service speed, the distribution of the number of
permanent customers is dependent on the specific values of
the DPS weights. It is noteworthy that the above-mentioned
performance measures are insensitive, in the sense that they
only depend on the service requirement distributions through
their first moments. (Insensitive bounds for the queue length

distributions were recently obtained in [8].) Numerical results
indicate that the limiting regimes yield surprisingly accurate
approximations in certain cases.

The results for the ‘elephants’ convey that flows with
relatively large service requirements will hardly benefit from
having large DPS weights. At first sight, the ‘ineffectiveness’
of the weights may be perceived as a somewhat discouraging
fact. However, some reflection shows that it is essentially
inevitable that large flows suffer correspondingly long delays.
This corroborates with the finding in [10] that the delay asymp-
totics in DPS queues with heavy-tailed service requirements
are insensitive to the values of the weights. In fact, the insen-
sitivity may also be interpreted as a positive characteristic, as
it means that classes with large service requirements will not
be significantly harmed by granting large weights to smaller
flows, while the results for the ‘mice’ indicate that the latter
flows will substantially benefit from that. In particular, it
supports the view that low-priority service utilizing left-over
bandwidth only is perfectly adequate for bulky transfers, since
higher priority will not significantly improve the performance,
and only cause harm to smaller flows. This is in agreement
with classical results for single-server queues where overall
performance is improved by giving preferential treatment to
shorter jobs [29], [30].

The phenomenon that the efficacy of the DPS weights varies
with the size of the service requirements has some intriguing
consequences. Specifically, for fixed load and weight values,
the performance of a given class does not necessarily improve
when speeding up the flow dynamics of competing classes.
This is rather surprising in view of the fact that in PS queues
with time-varying capacity, accelerating the rate of the fluctu-
ations usually does improve the performance. In particular, the
fluid and quasi-stationary regimes mentioned above typically
provide optimistic and pessimistic performance estimates in
the latter scenario. For a certain parameter range, Bonald
& Proutière [8] show that the two limiting regimes provide
provable performance bounds. However, for DPS the roles
of these regimes may be interchanged, making the fluid
regime a pessimistic bound and the quasi-stationary regime
an optimistic bound. This can be explained by the fact that
the DPS weights are more effective for classes with smaller
service requirements. Thus, in case the competing classes
have larger DPS weights, ramping up their arrival and service
processes may have the side-effect that DPS becomes more
effective in favoring them, which may reduce or even nullify
the positive effect of the finer time granularity, and negatively
affect the class under consideration. Conversely, in case the
competing classes have smaller DPS weights, slowing down
their dynamics may help DPS to become more effective in
favoring the class under consideration, which may limit or
even mitigate the negative impact of the coarser time profile.

The remainder of the paper is organized as follows. In
Section II we present a detailed model description and review
some useful preliminary results. In order to illuminate the key
ideas in the simplest possible setting, we start in Section III
with the case of two classes. We then extend the results to



a scenario with an arbitrary number of classes in Section IV.
In Section V we generalize the results of [28] to phase-type
service requirements, and show that the moments of the queue
length may be determined from sets of linear equations. In
Section VI we use these results to compare the approximations
motivated by the limiting regimes with the exact mean queue
lengths and conclude the paper with a discussion of the
main insights. Validation of DPS as a model for asymmetric
bandwidth sharing by simulation is the subject of an on-going
study within the project EQUANET.

II. MODEL DESCRIPTION AND PRELIMINARY RESULTS

We consider a single link of unit rate which is offered
traffic from K distinct flow classes. Class-k flows arrive as
a Poisson process of rate λk, and have generally distributed

service requirements with mean βk. Define λ :=
K∑

k=1

λk as

the total arrival rate, and denote by pk := λk/λ the fraction
of class-k flows. Define ρk := λkβk as the traffic intensity of

class k, and denote by ρ :=
K∑

k=1

ρk the total traffic intensity.

For stability, we assume ρ < 1.
The link rate is shared among the flows of the various

classes in accordance with the Discriminatory Processor-
Sharing (DPS) discipline which operates as follows. There
are positive weights w1, . . . , wK associated with each of the
classes. When there are nk class-k flows active k = 1, . . . ,K,

each class-j flow receives service at rate wj/
K∑

k=1

wknk.

A. Egalitarian Processor Sharing

In the special case when all wk are equal, and in particular
in case K = 1, the DPS discipline reduces to the familiar
egalitarian Processor-Sharing (PS) discipline. In that case, the
joint equilibrium distribution of the numbers of active flows
is [11], [18]:

P{(N1, . . . , Nk) = (n1, . . . , nK)}

= (1 − ρ)ρn

(
n

n1 . . . nK

) K∏
k=1

(
ρk

ρ

)nk

= (1 − ρ)n!
K∏

k=1

ρnk

k

nk!
,

with n := n1+. . .+nK . In particular, the marginal equilibrium
distribution of the number of active class-k flows is geometric
with parameter ρk/(1 − ρ + ρk):

P{Nk = nk} =
1 − ρ

1 − ρ + ρk

(
ρk

1 − ρ + ρk

)nk

,

so the mean number of active class-k flows is:

E{Nk} =
ρk

1 − ρ
. (1)

Using Little’s law, the mean delay of class-k flows is:

E{Sk} =
βk

1 − ρ
.

Note that the above performance measures are insensitive
with respect to the service requirement distributions, in the
sense that they only depend on the first moments of these
distributions.

B. Discriminatory Processor Sharing

In the general case when not all wk are equal, the system
loses the symmetry properties of the egalitarian PS discipline,
and does not admit similar closed-form results as presented
above. For phase-type service requirements the moments of
the number of active flows and thus the mean delays may
however still be determined from a set of equations, as we
shall show in Section V.

This set of equations may be used to evaluate the perfor-
mance measures for essentially any specific system. Note that
the class of phase-type distributions lie dense in the class of all
positive random variables. However, the implicit nature of the
equations renders little qualitative insight in the performance
as a function of the system parameters in general and the
weight values in particular.

C. Time-scale separation

In order to derive explicit results, we therefore evaluate
the performance in an asymptotic regime where the flow
dynamics of the various classes occur on widely separate time
scales. Formally, we consider a sequence of systems indexed
by a scaling factor r which governs the gap between the
time scales, and determine the performance as the value of r
approaches infinity. Specifically, class-k arrivals occur as a
Poisson process of rate λ

(r)
k := λkfk(r), k = 1, . . . , K, and

the class-k service requirements are distributed as P{B(r)
k <

x} := Bk(fk(r)x) for some fixed distribution function Bk(·)
with mean βk, so that β

(r)
k =

∞∫
0

xdP{B(r)
k < x} = βk/fk(r).

Thus fk(r) represents the time scale associated with class k
as a function of r. Note that the traffic intensity of class k

is ρ
(r)
k = λ

(r)
k β

(r)
k ≡ ρk, independent of r. We assume that

fk−1(r)/fk(r) → ∞ as r → ∞, i.e., lower indexed classes
operate on faster time scales. Let N

(r)
k be the number of

class-k flows in the r-th system, assuming it is in statistical
equilibrium. Let S

(r)
k be the class-k flow delay in the r-th

system. Invoking Little’s law, the class-k flow throughput may
be expressed as τ

(r)
k := β

(r)
k /E{S(r)

k } = ρk/E{N (r)
k }.

For phase-type service requirement distributions, it may be
shown using the techniques developed in [1] that the lim-
iting joint equilibrium distributions P{(N (∞)

1 , . . . , N
(∞)
K ) =

(n1, . . . , nK)} := lim
r→∞ P{(N (r)

1 , . . . , N
(r)
K ) = (n1, . . . , nK)}

are well-defined. Hence, the limiting conditional equilib-
rium probabilities P{N (∞)

k (nk+1, . . . , nK) = nk} :=
lim

r→∞ P{N (r)
k = nk|(N (r)

k+1, . . . , N
(r)
K ) = (nk+1, . . . , nK)} are

well-defined as well. We conjecture that these probabilities are
in fact well-defined for all service requirement distributions
with finite variance, although the speed of convergence may
vary.



From a mathematical perspective, the time scale decompo-
sition falls in the broader framework of perturbation analysis
of Markov processes, and specifically relates to the concept
of nearly complete decomposability. There exists an exten-
sive body of literature on perturbation analysis of finite-
state Markov processes. Some key references include the text
books [12], [33] and the survey paper [4]. Perturbation analysis
of infinite-state Markov processes is considered in [1], [7],
[22].

III. TWO CLASSES

In order to introduce the central ideas in the simplest
possible setting, we first focus on the case of two classes.
Note that the DPS mechanics then only depend on the ratio
of the weights w := w2/w1. In the next section we extend
the arguments to a scenario with an arbitrary number of user
classes.

As the value of r grows large, the gap between the time
scales of the two classes widens, and the flow dynamics of
class 1 evolve on an increasingly fast time scale compared
to class 2. In the limit for r → ∞, a complete time scale
decomposition occurs, and the class-1 dynamics will average
out on the relevant time scale for class 2. Thus class 1 takes
away a constant service rate ρ1, and class 2 behaves as in
a standard isolated PS system with reduced capacity 1 − ρ1.
Specifically, the distribution of the number of active class-2
flows is geometric with parameter ρ2/(1 − ρ1):

P{N (∞)
2 = n2} =

1 − ρ

1 − ρ1

(
ρ2

1 − ρ1

)n2

, (2)

so that:

E{N (∞)
2 } =

ρ2

1 − ρ
, (3)

and the flow throughput is τ
(∞)
2 = 1 − ρ.

The above results reflect a remarkable degree of
insensitivity. This is inherited from the fact that in the
limiting regime class 2 behaves as in an ordinary isolated PS
system which is known to exhibit insensitivity with respect to
the service requirement distribution. Moreover, the reduction
in capacity is simply the mean load of class 1, irrespective
of the weights or the service requirement distributions. As a
result, the class-2 performance measures only depend on the
service requirement distributions through their first moments,
and do not depend on the weight ratio w at all.

We now proceed to evaluate the performance of class 1.
The class-2 dynamics will nearly vanish as r → ∞ on the
relevant time scale for class 1, which will reach some sort
of statistical equilibrium for a given number of class-2 flows.
Thus when there are n2 active class-2 flows, class 1 behaves
as in a standard PS system with wn2 ‘permanent customers’.
The conditional distribution of the number of active class-1
flows is

P{N (∞)
1 (n2) = n1} = Pn1(ρ1, wn2), n1 = 0, 1, . . . ,

where Pn(u, x), n = 0, 1, 2, . . . is the distribution of the
number of regular customers in a PS system with traffic
intensity u and x permanent customers [6], [11], [18]:

Pn(u, x) :=
Γ(n + x + 1)

Γ(n + 1)Γ(x + 1)
un(1 − u)x+1, (4)

and Γ(z+1) :=
∫∞
0

yze−ydy denotes the complete Γ-function.
When x is a non-negative integer, Pn(u, x) reduces to the
familiar negative binomial distribution. The conditional mean
number of class-1 flows is:

E{N (∞)
1 (n2)} = (wn2 + 1)

ρ1

1 − ρ1
.

Using (2), we obtain the unconditional distribution of the
number of class-1 flows, and in particular the mean:

E{N (∞)
1 } =

(
w

ρ2

1 − ρ
+ 1
)

ρ1

1 − ρ1
, (5)

yielding the flow throughput:

τ
(∞)
1 = (1 − ρ1)

(
w

ρ2

1 − ρ
+ 1
)−1

.

Just like for class 2, the class-1 performance measures only
depend on the service requirement distributions through their
first moments. This is induced by the fact that in the limiting
regime class 1 behaves as in a PS system with permanent
customers which retains the insensitivity with respect to the
service requirement distribution. However, the class-1 perfor-
mance measures do depend on the weight ratio w, which
reflects the fact that the fraction of capacity claimed by the
permanent customers depends on the weights.

The above observations suggest that it is advantageous
to assign relatively large weights to small flows since their
throughput performance will strongly benefit, without large
flows being significantly affected. Conversely, it is unwise to
allocate large weights to large flows because doing so will not
substantially improve their throughput performance, but have
major repercussions for smaller flows.

The phenomenon that smaller flows are more sensitive to
the weight values than larger flows has some remarkable
implications. Let us focus on the performance of a given class
in a system with fixed load and weight values. The above
results show that the performance of that class approaches
that in an ordinary PS system when the competing class
operates on an increasingly fast time scale. In contrast, when
the competing class evolves on an increasingly slow time scale,
the limiting performance of that class may either be better or
worse than in a standard PS system, depending on the ratio of
the weights being larger or smaller than one. Consequently, the
performance of the class under consideration only improves
with increasing granularity of the competing class when it has
a larger weight. Otherwise, the performance actually degrades
with increasing granularity of the competing class. The latter
behavior is rather striking in view of the fact that in PS
queues with time-varying capacity accelerating the rate of the
fluctuations generally does improve the performance, see for
instance [13]. In DPS queues however, cranking up the flow



dynamics of a competing class with a larger weight may have
the side-effect that DPS becomes more effective in favoring it,
which may offset or even nullify the positive effect of the finer
granularity, and ultimately harm the class under consideration.
Likewise, decreasing the pace of a competing class with a
smaller weight may help DPS to become more effective in
favoring the class under consideration, which may alleviate or
even neutralize the negative impact of the coarser time profile.

IV. ARBITRARY NUMBER OF CLASSES

In the previous section we considered a two-class scenario
in order to introduce the basic notions. We now extend the
results to a scenario with an arbitrary number of user classes.

We first evaluate the performance of class K which has the
slowest flow dynamics. As the value of r grows large, the flow
dynamics of all the other classes occur on increasingly fast
time scales compared to class K. In the limit for r → ∞,
the flow dynamics of all the other classes will completely
average out on the relevant time scale for class K. Thus

the other classes take away a constant service rate
K−1∑
k=1

ρk,

and class K evolves as in an ordinary isolated PS system

with reduced capacity 1−
K−1∑
k=1

ρk. Specifically, the distribution

of the number of active class-K flows is geometric with

parameter ρK/(1 −
K−1∑
k=1

ρk):

P{N (∞)
K = nK} =

1 − ρ

1 −
K−1∑
k=1

ρk


 ρK

1 −
K−1∑
k=1

ρk




nK

, (6)

so that

E{N (∞)
K } =

ρK

1 − ρ
,

and the flow throughput is τ
(∞)
K = 1 − ρ.

Next, we turn to the performance of class K−1, which has
the slowest flow dynamics of all classes but K. As the value
of r grows large, the flow dynamics of classes 1, . . . ,K − 2
occur on increasingly fast time scales compared to class K−1,
whereas those of class K evolve on a comparably slow time
scale. In the limit for r → ∞, the flow dynamics of classes
1, . . . ,K −2 will entirely average out, while those of class K
will nearly freeze on the relevant time scale for class K − 1.
So classes 1, . . . ,K − 2 will claim a constant service rate
K−2∑
k=1

ρk, and class K−1 will approach equilibrium for a given

number of class-K flows. Thus when there are nK active class-
K flows, class K − 1 behaves as in a standard isolated PS

system of reduced capacity 1 −
K−2∑
k=1

ρk and nKwK/wK−1

‘permanent customers’. The conditional distribution of the
number of active flows of class K − 1 is:

P{N (∞)
K−1(nK) = nK−1} = PnK−1(u, x),

where P·(·, ·) is defined in (4), x = nKwK/wK−1 and u =

ρK−1/(1 −
K−2∑
k=1

ρk). The conditional mean number of flows

of class K − 1 is:

E{N (∞)
K−1(nK)} =

(
wK

wK−1
nK + 1

)
ρK−1

1 −
K−1∑
k=1

ρk

.

Using (6), we obtain the unconditional distribution of the
number of flows of class K − 1, and in particular the mean:

E{N (∞)
K−1} =

(
wK

wK−1

ρK

1 − ρ
+ 1
)

ρK−1

1 −
K−1∑
k=1

ρk

,

yielding the flow throughput:

τ
(∞)
K−1 = (1 −

K−1∑
k=1

ρk)
(

wK

wK−1

ρK

1 − ρ
+ 1
)−1

.

The above arguments readily extend to any given class l.
As the value of r grows large, the flow dynamics of classes
1, . . . , l − 1 occur on increasingly fast time scales compared
to class l, whereas those of classes l + 1, . . . ,K evolve
on comparably slow time scales. In the limit for r → ∞,
the flow dynamics of classes 1, . . . , l − 1 will completely
average out, while those of classes l + 1, . . . ,K will appear
pseudo-static on the relevant time scale for class l. So classes

1, . . . , l − 1 will consume a constant service rate
l−1∑
k=1

ρk,

and class l will converge to some sort of equilibrium for
a given population of flows of classes l + 1, . . . ,K. Thus
when there are nk active class-k flows, k = l + 1, . . . ,K,
class l evolves as in an ordinary isolated PS system of reduced

capacity 1−
l−1∑
k=1

ρk and
K∑

k=l+1

nkwk/wl ‘permanent users’. The

conditional distribution of the number of active class-l flows
is:

P{N (∞)
l (nl+1, . . . , nK) = nl} = Pnl

(u, x), (7)

with u = ρl/(1 −
l−1∑
k=1

ρk) and x =
K∑

k=l+1

nkwk/wl. The

conditional mean number of class-l flows is:

E{N (∞)
l (nl+1, . . . , nK)} =

ρl

(
K∑

k=l+1

wk

wl
nk + 1

)

1 −
l∑

k=1

ρk

.

Using (6), (7), the unconditional distribution and, in particular,
the mean number of class-l flows may be recursively derived
for any given class l = K − 1,K − 2, . . . , 1.

As in the two-class case, it is worth observing that the
performance metrics of all classes are insensitive in the sense
that they only depend on the service requirement distributions
through their first moments. In addition, the performance
characteristics of a given class l only depend on the weight
factors of classes l+1, . . . , K with slower flow dynamics, and



are independent of the weights of classes 1, . . . , l with faster
flow dynamics.

The above observations offer further testimony that it makes
sense to assign relatively large weights to smaller flows, since
this will considerably boost their throughput performance,
while only having a negligible impact on large flows. It is
not worth allocating large weights to large flows, because this
will only marginally improve their throughput performance,
but inflict major penalties for smaller flows.

V. EXACT ANALYSIS FOR PHASE-TYPE SERVICE

REQUIREMENTS

In this section we present an exact analysis of the mean
queue lengths and mean sojourn times for the case where
all classes have phase-type service requirement distributions.
Similar results were recently obtained in [17].

Within each user class, we distinguish between users resid-
ing in different service phases, and refer to these as belonging
to different customer types. Denoting the number of phases of
the class-k phase-type distribution with mk, the total number

of types is J :=
K∑

k=1

mk. With slight abuse of terminology, we

also refer to a class-i user in the jth service phase as being
of type

∑i−1
k=1 mk + j. We use k(j) to denote the user class

to which type-j users belong.
Let p0j be the probability that an arriving user starts as

a type-j user, j = 1, . . . , J . Thus,
∑

j:k(j)=l p0j = pl and, if
l = k(j), p0j/pl is the probability that a class-l user starts with
service phase j. The service phase corresponding to type j has
mean duration 1/µj , and its service weight is gj . Although
the DPS model implies that gi = gj = wk(j) if k(i) = k(j),
i.e., if types i and j belong to the same user class, this is
in fact not necessary for the analysis in the present section.
Furthermore, define pij (i, j = 1, . . . , J) as the probability
that, after completing its current service phase a type-i user
becomes a type-j user. In the DPS model, no transitions are
possible between types belonging to different user classes, but
this is again not essential for the analysis in the present section.
Also, pi0 is the probability that a type-i user will leave the
system after completing its current service phase. We denote
the number of type-j users in the system by N ′

j . By definition,
J∑

i=1

p0i = 1,
∑J

j=0 pij = 1, and
∑

j:k(j)=l N
′
j = Nl.

Denoting by N̄ ′ and n̄ the vectors (N ′
1, N

′
2, . . . , N

′
J ) and

(n1, n2, . . . , nJ ) ≥ 0̄, respectively, the equilibrium distribution
π(n̄) := P{N̄ ′ = n̄} satisfies, for n̄ > 0,


Λ +

J∑
i=1

giniµi

J∑
i=1

gini


π(n̄) (8)

=
J∑

i=1

Λp0iδni
π(n̄ − ēi)

+
J∑

i=1

gi(ni + 1)µi

J∑
j=1

gjnj

µipi0π(n̄ + ēi)

+
J∑

i=1

J∑
j=1

gi(ni + 1)µipijδnj
π(n̄ + ēi − ēj)

J∑
k=1

gknk + gi − gj

,

where δn = 1 if n > 0, δn = 0 otherwise and ēi is a vector
with i-th component equal to 1 and all other elements equal
to 0. It will be notationally convenient to use the following
transformation for n̄ �= 0̄:

R(n̄) =
π(n̄)

J∑
j=1

njgj

,

with the convention that R(0̄) = 0. Also, let p(z̄) and r(z̄) de-
note the generating functions of π(n̄) and R(n̄), respectively,
where z̄ = (z1, . . . , zJ ) and |zi| < 1 for i = 1, . . . , J :

p(z̄) = E{zN ′
1

1 . . . z
N ′

J

J }

=
∞∑

n1=0

. . .

∞∑
nJ=0

zn1
1 . . . znJ

J π(n̄),

r(z̄) = E{z
N ′

1
1 . . . z

N ′
J

J
J∑

i=1

N ′
igi

;
J∑

j=1

N ′
j > 0};

=
∞∑

n1=0

. . .
∞∑

nJ=0

zn1
1 . . . znJ

J R(n̄).

It follows that

p(z̄) =
J∑

i=1

gizi
∂r

∂zi
+ 1 − ρ. (9)

From (8), we obtain the following partial differential equation
for r(z̄):

Λ(1 − ρ)(1 −
J∑

j=1

p0jzj)

=
J∑

i=1


µigi(pi0 +

J∑
j=1

pijzj − zi)−

Λgizi(1 −
J∑

j=1

p0jzj)


 ∂r

∂zi
. (10)

The above equation allows us to determine the moments of
the queue length distribution by solving systems of linear
equations. Define the following partial derivatives of p(z̄) and
r(z̄):

Lj
i1...ij

=
∂jp(z̄)

∂zi1 . . . ∂zij

∣∣∣∣
z̄→1−

,

Rj
i1...ij

=
∂jr(z̄)

∂zi1 . . . ∂zij

∣∣∣∣
z̄→1−

.



The following three theorems yield the mean queue lengths of
each type.

The next three theorems determine the mean numbers of
customers of each type (L1

i = E{N ′
i} for type i).

Theorem 1: The jth moment of the queue length at phase i
can be expressed in terms of Rj

i1...ij
and Rj+1

i1...ij+1
as follows:

Lj
i1...ij

=
J∑

i=1

giR
j+1
i1...iji +

j∑
l=1

gil
Rj

i1...ij
.

Proof: The theorem can be directly obtained by differ-
entiating (9) with respect to zi1 , . . . , zij

and letting zi → 1
for all i.

Let aij be the accumulated amount of work (from arrival
until departure) received at phase j assuming a start in phase
i. Obviously, the aij are determined by aij =

∑J
k=1 pikakj ,

if i �= j, and aii = 1
µi

+
∑J

k=1 pikaki.

Theorem 2: The R1
j , j = 1, 2, . . . , J , are given by

R1
j =

1
gj

Λ
J∑

i=1

p0iaij .

Proof: It follows from (10) that the R1
j satisfy the

following set of J equations with J unknowns where j =
1, . . . , J ,

J∑
l=1

glµlpljR
1
l − µjgjR

1
j = −Λp0j ,

which admits a unique solution, given in the theorem.
An alternative argument is as follows. The capacity ded-

icated to type j is gjR
1
j = E{δN ′

j
gjN

′
j/
∑J

i=1 giN
′
i}. This

must be equal to the total amount of work requested in phase
j per unit of time, which is Λ

∑J
i=1 p0iaij .

Theorem 3: The coefficients R2
ij may be found from the

following set of J2 linear equations with J2 unknowns where
i, j = 1, . . . , J :

(µigi + µjgj)R2
ij

=
J∑

l=1

gl(Λp0i + µlpli)R2
jl + Λp0igjR

1
j

+
J∑

l=1

gl(Λp0j + µlplj)R2
il + Λp0jgiR

1
i . (11)

Proof: As in the proof for Theorem 2, the equations may
be obtained from (10).

In the numerical experiments that we conducted, we found that
the set of equations (11) are independent. This means that the
coefficients R2

ij (i, j = 1, . . . , J) can be uniquely determined.
For a system with two types, it can be analytically proven that
the set of equations (11) are independent as long as Λ < µ. As
a side remark, note that the set of equations can be reduced

to one of J(J + 1)/2 equations and equally many unknowns
by using the fact that R2

kl = R2
lk.

VI. NUMERICAL EXPERIMENTS

We now discuss the computational experiments that we
performed to illustrate the results. We investigate the accuracy
of the proposed limiting regimes as approximations to the
system performance. For the sake of transparency, we focus
on a system with two flow classes.

In the first two sets of experiments we examine the impact
of the weight factors and the load on the system performance
for exponentially distributed service requirements. In the third
set of experiments we then investigate the sensitivity of the
system performance with respect to the service requirement
distributions.

In all of the experiments, we assume β1 = β2 ≡ 1, so
that ρi ≡ λi, i = 1, 2, and take f1(r) = r, f2(r) = 1 to
describe the time scales associated with the two classes as
a function of the scaling factor r. Specifically, class-1 flows
arrive as a Poisson process of rate λ1r and have mean sizes
1/r, while class-2 arrivals occur as a Poisson process of rate λ2

and generate mean service requests of size 1. Thus the scaling
factor r corresponds to the time scale of class 1, whereas the
time scale of class 2 remains fixed.

For the sake of presentation, we focus on the performance
of class 1, and consider both the limiting regimes r → ∞
and r ↓ 0, where the flow dynamics of class 1 occur
on increasingly fast and slow time scales, respectively. The
performance in these two regimes corresponds to that of
classes 1 and 2, respectively, in the scenario r → ∞ as
analyzed in the previous sections. The various experiments
show that the limiting results provide accurate approximations,
even for parameter values far outside the asymptotic regime.
The section will be concluded with a discussion of some useful
rules of thumb.

A. Effect of the weight factors

We first examine the effect of the weight factors on the sys-
tem performance. We specifically consider the mean number
of active class-1 flows E{N (r)

1 } as a function of the ratio w =
w2/w1 for several values of the scaling factor r. Recall that
the mean delay is proportional to the mean number of active
flows while the flow throughput is inversely proportional. For
the limiting cases ‘r = 0’ and ‘r = ∞’, it follows from
formulas (3) (with the roles of classes 1 and 2 interchanged
as explained above) and (5) that E{N (0)

1 } = ρ1/(1 − ρ)
and E{N (∞)

1 } = ρ1[1 + wρ2/(1 − ρ)]/(1 − ρ1), respectively.
For r ∈ (0,∞), the value of E{N (r)

1 } is determined using
Theorems 1, 2 and 3.

In Figures 1(a) and 1(b), the mean number of class-1
flows E{N (r)

1 } is plotted as a function of the ratio w for
several values of the scaling factor r and ρ1 = ρ2 = 0.3
and ρ1 = 0.2, ρ2 = 0.4, respectively. The dashed horizontal
lines correspond to the limiting case ‘r = 0’, where the
flow dynamics of class 1 occur on an infinitely slow time
scale, and the performance becomes insensitive to the ratio w
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Fig. 1. Mean number of class-1 flows E{N(r)
1 } as a function of w

as noted earlier. Note that even for moderately small values
of r the performance of class 1 already appears to be mostly
insensitive. The solid slanted lines correspond to the limiting
case ‘r = ∞’, where the flow dynamics of class 1 occur on
an infinitely fast time scale. The performance then becomes
highly sensitive to the weights, and the mean number of
class-1 flows varies with the ratio w in an affine manner as
indicated earlier. The figures further show that for w = 1, the
performance is completely insensitive to the scaling factor r,
which is in agreement with the standard (multi-class) PS
system, cf. (1). Note that in general the performance of class 1
may either improve or deteriorate with increasing value of r,
depending on whether the ratio w is smaller or larger than 1.
This corroborates with our earlier observations in that regard.

B. Impact of the load

We now investigate the impact of the load on the system
performance, assuming equal class loads, i.e., ρ1 = ρ2 = ρ/2.
First we study the mean number of active class-1 flows as a
function of the load for r = 0.1 and several values of the
ratio w.

Figure 2(a) shows the mean number of class-1 flows
E{N (r)

1 } as a function of ρ for r = 0.1 and several values
of the ratio w. In addition, the scaled version 1−ρ

ρ E{N (r)
1 } is

0.2 0.4 0.6 0.8 1
rho

10

20

30

40

50

E{N  }(r)
1

w=inf
w=0

(a) E{N (r)
1 } as a function of ρ

0.2 0.4 0.6 0.8 1
rho

0.1

0.2

0.3

0.4

0.5

E{N  } (scaled)(r)
1 w=inf

w=2
w=1
w=0.5

w=0.1

w=0

(b) 1−ρ
ρ E{N (r)

1 } as a function of ρ

Fig. 2. Mean number of class-1 flows E{N(r)
1 } as a function of ρ; r = 0.1

graphed in Figure 2(b). The scaling coefficient 1−ρ
ρ is moti-

vated by the ordinary multi-class PS system where E{Nk} =
ρk

1−ρ , cf. (1).
The bold lines in Figure 2(b) correspond to the limiting

scenarios ‘w = 0’ and ‘w = ∞’, where the behavior reduces
to that in a strict-priority system. The dashed downward
curve corresponds to the case ‘w = 0’ where class 1
receives preemptive priority over class 2. Thus, class 1
is not affected by the presence of class 2, and behaves
as in a standard isolated PS system with unit capacity,
so that E{N (r)

1 } = ρ1/(1 − ρ1) = ρ/(2 − ρ). The solid
slightly upward curve represents the opposite case ‘w = ∞’,
where class 2 receives preemptive priority over class 1,
and E{N (r)

1 } = λ
(r)
1 [(ρ1/µ

(r)
1 + ρ2/µ

(r)
2 )/(1 − ρ1 − ρ2) +

1/µ
(r)
1 ]/(1 − ρ2) = ρ(20 − 9ρ)/[(1 − ρ)(40 − 20ρ)], see

for example [32] Chapter 10. Note that for moderately large
values of the ratio w the curves lie relatively close to the solid
curve corresponding to the case ‘w = ∞’. Since r = 0.1
is relatively small, this reflects again the property that the
performance of a class with large service requirements is not
too sensitive to the weight factors across a wide range of
load values. Note that in the limit for r ↓ 0 the performance
of class 1 will become completely insensitive to the values of
the weights.
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Next, we fix the ratio w = 1/2 and study the mean number
of class-1 flows as a function of the load for several values of
the scaling factor r.

Figure 3 gives the scaled mean number of class-1 flows
ρ

1−ρE{N (r)
1 } as a function of ρ for w = 1/2 and several

values of the scaling factor r.
The dashed horizontal line corresponds to the limiting case

‘r = 0’, where the flow dynamics of class 1 occur on an
infinitely slow time scale. The performance then becomes
insensitive to the ratio w, and it follows from formula (3) (with
the roles of classes 1 and 2 interchanged) that 1−ρ

ρ E{N (r)
1 } =

ρ1
ρ = 1

2 . The solid curve corresponds to the limiting case
‘r = ∞’, where the flow dynamics of class 1 occur on
an infinitely fast time scale. In that regime, the performance
is highly sensitive, and formula (5) implies 1−ρ

ρ E{N (r)
1 } =

ρ1
ρ

1−ρ+ρ2/2
1−ρ1

= 1
2

4−3ρ
4−2ρ .

C. Sensitivity to the service requirement distribution

Again assuming equal class loads (ρ1 = ρ2 = ρ/2),
we now examine the degree of sensitivity of the system
performance with respect to the service requirement distri-
butions. We assume the class-2 service requirements to be
exponentially distributed as before and vary the characteristics
of the class-1 service requirement distribution. For the latter
distribution, we choose from the class of Erlang distributions
(low variability, squared coefficient of variation c2 ≤ 1), the
hyperexponential distribution (high variability, c2 ≥ 1) and
the exponential distribution (intermediate case, c2 = 1). (The
squared coefficient of variation of a random variable X is
defined as c2 = Var{X}/(E{X})2.)

First we consider a relatively lightly-loaded system (ρ =
0.25; Tables I–V), and then repeat the experiment for a more
heavily-loaded system (ρ = 0.75; Tables VI–X). For ρ = 0.5,
ρ = 0.9 and ρ = 0.95, we refer to [19].

In almost all cases of Tables I–V, the mean number of
class-1 flows is quite insensitive to the service requirement
distribution, although less so for larger values of r (faster
class-1 flow dynamics). This reinforces our earlier findings
that the performance of a fast class is rather sensitive to the

Service requirement distribution
Erl(4) Erl(2) Exp Hyp(2) Hyp(2)

w c2 = 1/4 c2 = 1/2 c2 = 1 c2 = 2 c2 = 10
0.1 0.15382 0.15465 0.15595 0.15826 0.16025
0.5 0.16426 0.16442 0.16468 0.16495 0.16512
1 0.16667 0.16667 0.16667 0.16667 0.16667
2 0.16793 0.16789 0.1678 0.16772 0.16766
10 0.16895 0.16889 0.16879 0.16868 0.16861

TABLE I

MEAN NUMBER OF CLASS-1 FLOWS E{N(r)
1 } (r = 1/10)

Service requirement distribution
Erl(4) Erl(2) Exp Hyp(2) Hyp(2)

w c2 = 1/4 c2 = 1/2 c2 = 1 c2 = 2 c2 = 10
0.1 0.14762 0.14804 0.14881 0.15165 0.15761
0.5 0.15953 0.15999 0.16071 0.16200 0.16310
1 0.16667 0.16667 0.16667 0.16667 0.16667
2 0.17251 0.17209 0.17143 0.17073 0.17027
10 0.17807 0.17767 0.17687 0.17611 0.17563

TABLE II

MEAN NUMBER OF CLASS-1 FLOWS E{N(r)
1 } (r = 1/2)

Service requirement distribution
Erl(4) Erl(2) Exp Hyp(2) Hyp(2)

w c2 = 1/4 c2 = 1/2 c2 = 1 c2 = 2 c2 = 10
0.1 0.14649 0.14673 0.14719 0.14928 0.15667
0.5 0.15766 0.15806 0.15873 0.16041 0.16237
1 0.16667 0.16667 0.16667 0.16667 0.16667
2 0.17650 0.17574 0.17460 0.17311 0.17203
10 0.18926 0.18817 0.18615 0.18424 0.18302

TABLE III

MEAN NUMBER OF CLASS-1 FLOWS E{N(r)
1 } (r = 1)

Service requirement distribution
Erl(4) Erl(2) Exp Hyp(2) Hyp(2)

w c2 = 1/4 c2 = 1/2 c2 = 1 c2 = 2 c2 = 10
0.1 0.14588 0.14601 0.14626 0.14757 0.15550
0.5 0.15638 0.15665 0.15714 0.15881 0.16180
1 0.16667 0.16667 0.16667 0.16667 0.16667
2 0.18094 0.18001 0.17857 0.17601 0.17379
10 0.20997 0.20708 0.20238 0.19763 0.19452

TABLE IV

MEAN NUMBER OF CLASS-1 FLOWS E{N(r)
1 } (r = 2)

Service requirement distribution
Erl(4) Erl(2) Exp Hyp(2) Hyp(2)

w c2 = 1/4 c2 = 1/2 c2 = 1 c2 = 2 c2 = 10
0.1 0.14537 0.14540 0.14545 0.14577 0.15117
0.5 0.15512 0.15519 0.15533 0.15606 0.16046
1 0.16667 0.16667 0.16667 0.16667 0.16667
2 0.18783 0.18736 0.18651 0.18335 0.17673
10 0.29512 0.28679 0.27381 0.25071 0.23080

TABLE V

MEAN NUMBER OF CLASS-1 FLOWS E{N(r)
1 } (r = 10)



weights, whereas that of a slow class is not too sensitive.
The sensitivity increases when ρ = 0.5, but still remains
limited. For ρ = 0.75, however, the sensitivity is considerably
amplified, and becomes even stronger for ρ = 0.9 and ρ =
0.95 [19]. Evidently, for w ≈ 1, the strict insensitivity to the
service requirement distribution of the ordinary multi-class PS
system manifests itself, regardless of the load.

A final remarkable observation is that the mean number of
class-1 flows is amazingly close to that in a standard multi-
class PS system for a large coefficient of variation as well.

D. Rules of thumb

The main insights from the numerical experiments may be
summarized as follows.

• If a class has relatively slow dynamics, then its perfor-
mance is mostly insensitive to the weights, whereas its
performance is quite sensitive in case it has fast dynamics.
As observed before, this suggests assigning relatively
large weights to smaller flows, since this will substantially
boost their performance, without seriously affecting the
performance of large flows.

• The limiting scenarios ‘r = 0’ (‘fluid’ regime) and ‘r =
∞’ (‘quasi-stationary’ regime) provide lower and upper
bounds for the performance, cf. [8]. However, it depends
on the ratio of the weights whether the fluid regime is
a lower bound and the quasi-stationary regime an upper
bound, or vice versa.

• When the weights of the various classes are roughly
equal, the performance impact of the service requirement
distribution as well as that of the time scale parameter
may be neglected, which is in agreement with the stan-
dard multi-class PS system.

• At low loads, the system performance is largely insensi-
tive to the service requirement distribution, except for a
class with a small weight and fast flow dynamics.
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