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Supplementary Information 1 

 2 
Background of the Software RPM 3 

The RPM is a mechanism that consist of two perpendicular axed frames driven by motors that 4 

continually rotate an experiment frame relative to the world frame (Figures 1 and S1). Or since 5 

the gravity direction is fixed in the world frame, it continually rotates the gravity direction 6 

relative to the experimental frame ergo the sample. The gravity vector acceleration can be 7 

averaged over time resulting in a certain mean gravity ranging from the theoretical 0 g to 1 g 8 

where 1 g is the Earth gravity acceleration of 9.81 m/s2. If the mean gravity is close to 0 g this is 9 

called zero gravity or better microgravity, in order to take into account small deviations such as 10 

distance from the center of rotation (see e.g. 1,2). If the mean gravity is between 0 and 1 g it is 11 

referred to as partial gravity or hypo-gravity. Note that the experiment must be placed in the 12 

center of the experimental frames to prevent it from being exposed to possibly significant 13 

centrifugal acceleration 1,3. 14 

 15 

 16 
Figure S1: Set up of partial g simulation systems. A: Cartoon of the software directed simulated partial 17 

gravity Random Positioning Machine (RPMSW). Left the hardware / axes configuration. Right: Software 18 

directing the motion of this RPM can be set to have a certain degree of preference along the Earth gravity 19 
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vector. Resultant g represented by yellow arrow. B: The hardware directed simulated partial gravity 20 

RPM (RPMHW). Left the hardware configuration consisting of a regular (large size) RPM where the 21 

partial g is generated by a centrifuge (grey). Right the resultant g-load depicted by the black arrow 22 

pointing from the rotation axis of the centrifuge outwards. 23 

 24 
Kinematics 25 

The joint space of the mechanism is the set of motor angles (q1, q2) and forms a 2-plane. The 26 

task space is the set of gravity directions relative to the experiment and forms a sphere (Figure 27 

S2A). The sphere is embedded in 3-space and can be parametrized by the three components of 28 

the gravity vector (g1, g2, g3). The function from the motor angles to the gravity direction is 29 

called the forward kinematics and is given by: 30 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔) = 𝑓𝑓𝑓𝑓𝑔𝑔𝑓𝑓𝑔𝑔𝑔𝑔𝑓𝑓 (𝑞𝑞) = �
𝑐𝑐𝑓𝑓𝑐𝑐(𝑞𝑞1)𝑐𝑐𝑓𝑓𝑐𝑐(𝑞𝑞2)
𝑐𝑐𝑓𝑓𝑐𝑐(𝑞𝑞1)𝑐𝑐𝑔𝑔𝑠𝑠(𝑞𝑞2)

𝑐𝑐𝑔𝑔𝑠𝑠(𝑞𝑞1)
�  

 31 
where the motor angles can be identified with the latitude and longitude of a sphere. The inverse 32 

function from the gravity direction to the motor angles is called the inverse kinematics. 33 

 34 

The motor angles follow a defined path in joint space q(t) that results in a certain gravity 35 

direction path in task space g(t). The goal is to set a motor path q(t) such that the gravity path g(t) 36 

has the desirable properties. In the following two such desirable properties for g(t) will be 37 

proposed and one algorithm for choosing a motor path q(t) that has these properties. First they 38 

will be discussed in the context of microgravity and later they will be generalized to partial 39 

gravity. 40 

 41 

Zero mean 42 

The gravity vector g(t) can be averaged over time resulting in a certain mean gravity: 43 
 44 

𝑚𝑚𝑚𝑚𝑔𝑔𝑠𝑠�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)� =
1
𝑔𝑔
�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑔𝑔)𝑓𝑓𝑔𝑔 

 45 
The first and most obvious desirable property is that the mean converges to zero or (0, 0, 0). 46 

Most algorithms from literature have this property 4,5. For example also a simple clinostat has it. 47 

However, for some samples this may not be sufficient. Note that the rate of convergence must be 48 

fast compared to the relevant time constants of the experiment. For example the perception time 49 
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for plants is in the order of seconds 6, for the single cell organism Euglena gracilis, a similar time 50 

order of around five seconds has been reported 7.  51 

 52 
Uniform distribution 53 

The space of al gravity directions provides a sphere. The gravity path g(t) walks over this sphere 54 

and visits different points. The relative times that it spends in the neighborhoods of different 55 

points result in a certain distribution over the sphere. If the path visits all points equally the path 56 

converges to a uniform distribution (Figure S2A), and if it visits some points more than others 57 

the path converges to a non-uniform distribution. A simple 2D clinostat for example only visits 1 58 

great circle on the sphere (which can be identified with the equator of the sphere), and therefore 59 

results in a very non-uniform distribution. Different distributions can result in same mean 60 

gravity. For example both the uniform distribution and the clinostat distribution result in the 61 

same zero mean. 62 

Certain experiments may be more sensitive to gravity in some directions than in other directions, 63 

and are therefore sensitive to the distribution of the gravity vector. Such experiments would 64 

result in different outcomes for different distributions. Note that such experiments are also 65 

sensitive to how the experiment is fixed in the experiment frame because the distribution is 66 

relative to the experiment frame.  67 

The only distribution that has no bias in certain directions is the uniform distribution. Therefore 68 

the second desirable property of a gravity path is that the distribution converges to a uniform 69 

distribution. Note that also here the rate of convergence must preferably be less compared to the 70 

relative time constants of the experiment. 71 

A good measure for the uniformity is the standard deviation of the density of the distribution 72 

over surface of the sphere. Here density (t, q) is the amount of time the gravity direction has 73 

spent in a neighborhood of f(q). 74 

𝑐𝑐𝑔𝑔𝑔𝑔𝑠𝑠𝑓𝑓𝑔𝑔𝑔𝑔𝑓𝑓 𝑓𝑓𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑓𝑓𝑠𝑠�𝑓𝑓𝑚𝑚𝑠𝑠𝑐𝑐𝑔𝑔𝑔𝑔𝑔𝑔(𝑞𝑞, 𝑔𝑔)� = � 1
4𝜋𝜋𝑔𝑔

��𝑓𝑓𝑚𝑚𝑠𝑠𝑐𝑐𝑔𝑔𝑔𝑔𝑔𝑔(𝑞𝑞, 𝑔𝑔) −
𝑔𝑔

4𝜋𝜋
�
2
𝑐𝑐𝑓𝑓𝑐𝑐(𝑞𝑞1)𝑓𝑓𝑞𝑞1𝑞𝑞2 

 75 
Most algorithms from literature (for example figure 4 of Wuest et al.4) including the algorithm 76 

for the first generation of the RPM 2 result in a uniform distribution in the latitude – longitude 77 

plane. However, when this plane is folded around the sphere the density at the poles becomes 78 

much higher than at the equator. This is similar to a globe where the density of meridians at the 79 
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poles is higher than at the equator. Although the first property (zero mean) is met, the second 80 

property (uniform distribution) is not met. 81 

 82 
Random walk 83 

The gravity path that is proposed consists of a random walk over the surface of the sphere. The 84 

random walk consists of a sequence of steps and turns. The steps are geodesic curves of a certain 85 

length which on the surface of a sphere correspond to pieces of great circles. The turns are 86 

uniformly distributed between plus or minus a defined maximum angle. It can be proven that 87 

such a random walk converges to a uniform distribution over the sphere 8. 88 

 89 

 90 
Figure S2: The beginning of a path of the gravity vector over the sphere for zero gravity (on the left) and 91 

for Mars (on the right). It can be seen that on the left the trajectory is distributed uniformly over the 92 

sphere, while on the right it trajectory spends more time at the bottom than at the top, resulting in a 93 

partial gravity factor of 0.38. Mean in the figure is the mean error between the desired and the actual 94 

partial gravity factor after running for 1 hour. 95 

 96 
Generalization to partial gravity 97 

The algorithm for zero gravity (random walk over a sphere) can be generalized to partial gravity 98 

by introducing a prolate spheroid. A prolate spheroid is an ellipse that is rotated around its major 99 

axis and has the shape of a rugby ball (see Figures 1B and S3). It has two focal points. One of the 100 

focal points is fixed in the center of the sphere of gravity directions, and the other focal point is 101 

moved in the direction of the desired partial gravity. Now instead of performing a random walk 102 

over the sphere a geodesic random walk over the spheroid is performed. The resulting random 103 

walk will converge to a uniform distribution over the spheroid. The proof from 8 still holds and 104 

this random walk is then projected from the spheroid onto the sphere. 105 
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Because a relatively large part of the surface of the spheroid is on one side of the sphere and a 106 

relatively small part on the other side (Figure S2B), the gravity direction spends more time on 107 

that side of the sphere. So if the gravity vector is averaged over time, it converges to a certain 108 

non-zero partial gravity. By varying the ellipticity of the spheroid from 0 to 1 the simulated 109 

partial gravity is varied from 0 to 1. 110 

The two desirable properties can be generalized to partial gravity as follows. For the first 111 

property (zero mean) instead of looking at the norm of the mean gravity we look at the norm of 112 

the difference between the mean gravity and the desired partial gravity. For the second property 113 

(uniform density), instead of looking at the standard deviation of the density of the distribution 114 

over the sphere, we look at the distribution over the spheroid. 115 

 116 

 117 
Figure S3: Distribution of the path over a spheroid (on the left) and resulting distribution of the gravity 118 

vector over the sphere (on the right) after running for 1 hour. The top row is for zero gravity (eccentricity 119 

of 0), the middle row for the Moon (eccentricity of 0.25 resulting in partial gravity of 0.17) and the 120 

bottom row for Mars (eccentricity of 0.53 resulting in a partial gravity of 0.38). The scale bars represent 121 
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the normalized density where 1 is uniform density. One wants the pictures on the left to be as uniform as 122 

possible. For the pictures on the right it depends on the desired partial gravity factor. Mean is the mean 123 

error between the desired and the actual partial gravity factor. Sigma is the standard deviation of the 124 

normalized density of the distribution relative to a uniform distribution. 125 
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