22 research outputs found

    Stem Cell-Derived Photoreceptor Transplants Differentially Integrate Into Mouse Models of Cone-Rod Dystrophy

    Get PDF
    Citation: Santos-Ferreira T, Völkner M, Borsch O, et al. Stem cell-derived photoreceptor transplants differentially integrate into mouse models of cone-rod dystrophy. Invest Ophthalmol Vis Sci. 2016;57:3509-3520. DOI:10.1167/iovs.16-19087 PURPOSE. Preclinical studies on photoreceptor transplantation provided evidence for restoration of visual function with pluripotent stem cells considered as a potential source for sufficient amounts of donor material. Adequate preclinical models representing retinal disease conditions of potential future patients are needed for translation research. Here we compared transplant integration in mouse models with mild (prominin1-deficient; Prom1 METHODS. For photoreceptor transplant production, we combined the mouse embryonic stem cell retinal organoid system with rhodopsin-driven GFP cell labeling by recombinant adenoassociated virus (AAV). Organoid-derived photoreceptors were enriched by CD73-based magnetic-activated cell sorting (MACS) and transplanted subretinally into wild-type, Prom1 and Cpfl1/Rho À/À hosts. The survival, maturation, and synapse formation of donor cells was analyzed by immunohistochemistry. RESULTS. Retinal organoids yielded high photoreceptor numbers that were further MACSenriched to 85% purity. Grafted photoreceptors survived in the subretinal space of all mouse models. Some cells integrated into wild-type as well as Prom1 À/À mouse retinas and acquired a mature morphology, expressing rod and synaptic markers in close proximity to secondorder neurons. In contrast, in the novel Cpfl1/Rho À/À model with complete photoreceptor degeneration, transplants remained confined to the subretinal space, expressed rod-specific but only reduced synaptic markers, and did not acquire mature morphology. CONCLUSIONS. Comparison of photoreceptor grafts in preclinical models with incomplete or complete photoreceptor loss, showed differential transplant success with effective and impaired integration, respectively. Thus, Cpfl1/Rho À/À mice represent a potential benchmark model resembling patients with severe retinal degeneration to optimize photoreceptor replacement therapies

    In Vivo Analysis of Disease-Associated Point Mutations Unveils Profound Differences in mRNA Splicing of Peripherin-2 in Rod and Cone Photoreceptors

    Get PDF
    Point mutations in peripherin-2 (PRPH2) are associated with severe retinal degenerative disorders affecting rod and/or cone photoreceptors. Various disease-causing mutations have been identified, but the exact contribution of a given mutation to the clinical phenotype remains unclear. Exonic point mutations are usually assumed to alter single amino acids, thereby influencing specific protein characteristics;however, they can also affect mRNA splicing. To examine the effects of distinct PRPH2 point mutations on mRNA splicing and protein expression in vivo, we designed PRPH2 minigenes containing the three coding exons and relevant intronic regions of human PRPH2. Minigenes carrying wild type PRPH2 or PRPH2 exon 2 mutations associated with rod or cone disorders were expressed in murine photoreceptors using recombinant adeno-associated virus (rAAV) vectors. We detect three PRPH2 splice isoforms in rods and cones: correctly spliced, intron 1 retention, and unspliced. In addition, we show that only the correctly spliced isoform results in detectable protein expression. Surprisingly, compared to rods, differential splicing leads to lower expression of correctly spliced and higher expression of unspliced PRPH2 in cones. These results were confirmed in qRT-PCR experiments from FAC-sorted murine rods and cones. Strikingly, three out of five cone disease-causing PRPH2 mutations profoundly enhanced correct splicing of PRPH2, which correlated with strong upregulation of mutant PRPH2 protein expression in cones. By contrast, four out of six PRPH2 mutants associated with rod disorders gave rise to a reduced PRPH2 protein expression via different mechanisms. These mechanisms include aberrant mRNA splicing, protein mislocalization, and protein degradation. Our data suggest that upregulation of PRPH2 levels in combination with defects in the PRPH2 function caused by the mutation might be an important mechanism leading to cone degeneration. By contrast, the pathology of rod-specific PRPH2 mutations is rather characterized by PRPH2 downregulation and impaired protein localization

    Multigene Analyses of Monocot Relationships

    Get PDF
    We present an analysis of supra-familial relationships of monocots based on a combined matrix of nuclear I8S and partial 26S rDNA, plastid atpB, matK, ndhF, and rbcL, and mitochondrial atp1 DNA sequences. Results are highly congruent with previous analyses and provide higher bootstrap support for nearly all relationships than in previously published analyses. Important changes to the results of previous work are a well-supported position of Petrosaviaceae as sister to all monocots above Acorales and Alismatales and much higher support for the commelinid clade. For the first time, the spine of the monocot tree has some bootstrap support, although support for paraphyly of liliids is still only low to moderate (79-82%). Dioscoreales and Pandanales are sister taxa (moderately supported, 87- 92%), and Asparagales are weakly supported (79%) as sister to the commelinids. Analysis of just the four plastid genes reveals that addition of data from the other two genomes contributes to generally better support for most clades, particularly along the spine. A new collection reveals that previous material of Petermannia was misidentified, and now Petermanniaceae should no longer be considered a synonym of Colchicaceae. Arachnitis (Corsiaceae) falls into Liliales, but its exact position is not well supported. Sciaphila (Triuridaceae) falls with Pandanales. Trithuria (Hydatellaceae) falls in Poales near Eriocaulaceae, Mayacaceae, and Xyridaceae, but until a complete set of genes are produced for this taxon, its placement will remain problematic. Within the commelinid clade, Dasypogonaceae are sister to Poales and Arecales sister to the rest of the commelinids, but these relationships are only weakly supported

    Label‑free imaging flow cytometry for analysis and sorting of enzymatically dissociated tissues

    No full text
    Biomedical research relies on identification and isolation of specific cell types using molecular biomarkers and sorting methods such as fluorescence or magnetic activated cell sorting. Labelling processes potentially alter the cells’ properties and should be avoided, especially when purifying cells for clinical applications. A promising alternative is the label-free identification of cells based on physical properties. Sorting real-time deformability cytometry (soRT-DC) is a microfluidic technique for label-free analysis and sorting of single cells. In soRT-FDC, bright-field images of cells are analyzed by a deep neural net (DNN) to obtain a sorting decision, but sorting was so far only demonstrated for blood cells which show clear morphological differences and are naturally in suspension. Most cells, however, grow in tissues, requiring dissociation before cell sorting which is associated with challenges including changes in morphology, or presence of aggregates. Here, we introduce methods to improve robustness of analysis and sorting of single cells from nervous tissue and provide DNNs which can distinguish visually similar cells. We employ the DNN for image-based sorting to enrich photoreceptor cells from dissociated retina for transplantation into the mouse eye

    Stem Cell-Derived Photoreceptor Transplants Differentially Integrate Into Mouse Models of Cone-Rod Dystrophy

    No full text
    Preclinical studies on photoreceptor transplantation provided evidence for restoration of visual function with pluripotent stem cells considered as a potential source for sufficient amounts of donor material. Adequate preclinical models representing retinal disease conditions of potential future patients are needed for translation research. Here we compared transplant integration in mouse models with mild (prominin1-deficient; Prom1-/-) or severe (cone photoreceptor function loss 1/rhodopsin-deficient double-mutant; Cpfl1/Rho-/-) cone-rod degeneration.status: publishe

    Protein expression of PRPH2 mutants linked to adRP.

    No full text
    <p>(A-F) Immunohistology of retinas transduced with PRPH2 minigenes containing single point mutations as indicated under the control of the hRHO promoter. Scale bar represents 20 μm. (G) Western blot analysis from membrane preparations of four pooled murine retinas from four animals transduced with the PRPH2 minigenes shown in (A-F) on P14. All retinas were collected three weeks post injection. The arrowhead indicates a degradation band detected at 42 kDa. Ctrl, protein lysates from non-injected control retinas. (H) Semi-quantitative analysis of the results shown in (G). For quantification, three technical replicates were conducted and PRPH2 expression was normalized to the ATPase expression. All data are given as mean values and error bars represent the SEM. Statistical analysis was performed using one-way ANOVA followed by the Dunett’s test. *, p< 0.05; **, p< 0.01; ***, p< 0.001. n.s., not significant.</p

    Impaired targeting of truncated PRPH2.

    No full text
    <p>Immunohistology of transduced murine retinas showing rod- (B) and cone-specific (C) expression of a truncated version of PRPH2. (A) Truncated PRPH2 contains only exon 1 and a downstream stop codon (indicated by “X”) mimicking translation from unspliced PRPH2 mRNA and PRPH2 mRNA with intron 1 retention. Staining for B1a and M-ops was used to label rod and cone photoreceptors, respectively. Truncated PRPH2 is not transported to outer segments and is almost exclusively present in inner segments and somata of photoreceptors. Scale bar represents 20 μm.</p
    corecore