217 research outputs found

    Relaxation of 2+1 dimensional classical O(2) symmetric scalar fields

    Get PDF
    Real time thermalization and relaxation phenomena are studied in the low energy density phase of the 2+1 dimensional classical O(2) symmetric scalar theory by solving numerically its dynamics. The near-equilibrium decay rate of on-shell waves and the power law governing the large time asymptotics of the off-shell relaxation agree with the analytic results based on linear response theory. The realisation of the Mermin-Wagner theorem is also studied in the final equilibrium ensemble

    Freeze-out parameters: lattice meets experiment

    Get PDF
    We present our results for ratios of higher order fluctuations of electric charge as functions of the temperature. These results are obtained in a system of 2+1 quark flavors at physical quark masses and continuum extrapolated. We compare them to preliminary data on higher order moments of the net electric charge distribution from the STAR collaboration. This allows us to determine the freeze-out temperature and chemical potential from first principles. We also show continuum-extrapolated results for ratios of higher order fluctuations of baryon number. These will allow to test the consistency of the approach, by comparing them to the corresponding experimental data (once they become available) and thus extracting the freeze-out parameters in an independent way.Comment: 5 pages, 7 figures, revte

    Lattice SU(3) thermodynamics and the onset of perturbative behaviour

    Get PDF
    We present the equation of state (pressure, trace anomaly, energy density and entropy density) of the SU(3) gauge theory from lattice field theory in an unprecedented precision and temperature range. We control both finite size and cut-off effects. The studied temperature window (0.7...1000Tc0.7... 1000 T_c) stretches from the glueball dominated system into the perturbative regime, which allows us to discuss the range of validity of these approaches. From the critical couplings on fine lattices we get T_c/\Lambdamsbar=1.26(7) and use this ratio to express the perturbative free energy in TcT_c units. We also determine the preferred renormalization scale of the Hard Thermal Loop scheme and we fit the unknown g6g^6 order perturbative coefficient at extreme high temperatures T>100TcT>100T_c. We furthermore quantify the nonperturbative contribution to the trace anomaly using two simple functional forms.Comment: 7 pages, Contribution to the The XXVIII International Symposium on Lattice Field Theory; June 14 - 19, 2010, Villasimius, Sardinia, Ital

    Fluctuations and correlations in high temperature QCD

    Get PDF
    We calculate second- and fourth-order cumulants of conserved charges in a temperature range stretching from the QCD transition region towards the realm of (resummed) perturbation theory. We perform lattice simulations with staggered quarks; the continuum extrapolation is based on Nt=10…24N_t=10\dots24 in the crossover-region and Nt=8…16N_t=8\dots16 at higher temperatures. We find that the Hadron Resonance Gas model predictions describe the lattice data rather well in the confined phase. At high temperatures (above ∼\sim250 MeV) we find agreement with the three-loop Hard Thermal Loop results.Comment: 18 pages revtex, 13 figure

    Three-loop HTLpt thermodynamics at finite temperature and chemical potential

    Full text link
    In this proceedings we present a state-of-the-art method of calculating thermodynamic potential at finite temperature and finite chemical potential, using Hard Thermal Loop perturbation theory (HTLpt) up to next-to-next-leading-order (NNLO). The resulting thermodynamic potential enables us to evaluate different thermodynamic quantities including pressure and various quark number susceptibilities (QNS). Comparison between our analytic results for those thermodynamic quantities with the available lattice data shows a good agreement.Comment: 5 pages, 6 figures, conference proceedings of XXI DAE-BRNS HEP Symposium, IIT Guwahati, December 2014; to appear in 'Springer Proceedings in Physics Series

    The QCD phase diagram from analytic continuation

    Get PDF
    We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD simulations. Then we use various formulas to perform an analytic continuation to real values of the baryo-chemical potential. Our data set maintains strangeness neutrality to match the conditions of heavy ion physics. The systematic errors are under control up to μB≈300\mu_B\approx 300 MeV. For the curvature of the transition line we find that there is an approximate agreement between values from three different observables: the chiral susceptibility, chiral condensate and strange quark susceptibility. The continuum extrapolation is based on Nt=N_t= 10, 12 and 16 lattices. By combining the analysis for these three observables we find, for the curvature, the value κ=0.0149±0.0021\kappa = 0.0149 \pm 0.0021.Comment: 14 pages, 4 figures, revised versio

    QCD thermodynamics with dynamical overlap fermions

    Get PDF
    We study QCD thermodynamics using two flavors of dynamical overlap fermions with quark masses corresponding to a pion mass of 350 MeV. We determine several observables on N_t=6 and 8 lattices. All our runs are performed with fixed global topology. Our results are compared with staggered ones and a nice agreement is found.Comment: 14 pages, 6 figures, 1 tabl
    • …
    corecore