114 research outputs found

    Spontaneous low frequency BOLD signal variations from resting-state fMRI are decreased in Alzheimer disease

    Get PDF
    Previous studies have demonstrated altered brain activity in Alzheimer\u27s disease using task based functional MRI (fMRI), network based resting-state fMRI, and glucose metabolism from 18 F fluorodeoxyglucose-PET (FDG-PET). Our goal was to define a novel indicator of neuronal activity based on a first-order textural feature of the resting state functional MRI (RS-fMRI) signal. Furthermore, we examined the association between this neuronal activity metric and glucose metabolism from F-18 FDG-PET. We studied 15 normal elderly controls (NEC) and 15 probable Alzheimer disease (AD) subjects from the AD Neuroimaging Initiative. An independent component analysis was applied to the RS-fMRI, followed by template matching to identify neuronal components (NC). A regional brain activity measurement was constructed based on the variation of the RS-fMRI signal of these NC. The standardized glucose uptake values of several brain regions relative to the cerebellum (SUVR) were measured from partial volume corrected FDG-PET images. Comparing the AD and NEC groups, the mean brain activity metric was significantly lower in the accumbens, while the glucose SUVR was significantly lower in the amygdala and hippocampus. The RS-fMRI brain activity metric was positively correlated with cognitive measures and amyloid beta 1-42 cerebral spinal fluid levels; however, these did not remain significant following Bonferroni correction. There was a significant linear correlation between the brain activity metric and the glucose SUVR measurements. This proof of concept study demonstrates that this novel and easy to implement RS-fMRI brain activity metric can differentiate a group of healthy elderly controls from a group of people with AD

    An exploration of cognitive subgroups in Alzheimer's disease

    Get PDF
    Heterogeneity is observed in the patterns of cognition in Alzheimer's disease (AD). Such heterogeneity might suggest the involvement of different etiological pathways or different host responses to pathology. A total of 627 subjects with mild/moderate AD underwent cognitive assessment with the Mini-Mental State Examination (MMSE) and the Dementia Rating Scale-2 (DRS-2). Latent class analysis (LCA) was performed on cognition subscale data to identify and characterize cognitive subgroups. Clinical, demographic, and genetic factors were explored for association with class membership. LCA suggested the existence of four subgroups; one group with mild and another with severe global impairment across the cognitive domains, one group with primary impairments in attention and construction, and another group with primary deficits in memory and orientation. Education, disease duration, age, Apolipoprotein E-Δ4 (APOE Δ4) status, gender, presence of grasp reflex, white matter changes, and early or prominent visuospatial impairment were all associated with class membership. Our results support the existence of heterogeneity in patterns of cognitive impairment in AD. Our observation of classes characterized by predominant deficits in attention/construction and memory respectively deserves further exploration as does the association between membership in the attention/construction class and APOE Δ4 negative status. (JINS, 2010, 16, 233-243.

    Structural Brain Magnetic Resonance Imaging to Rule out Comorbid Pathology in the Assessment of Alzheimer\u27s Disease Dementia: Findings from the Ontario Neurodegenerative Disease Research Initiative (ONDRI) Study and Clinical Trials over the Past 10 Years

    Get PDF
    Background/Objective: Structural brain magnetic resonance imaging (MRI) is not mandatory in Alzheimer\u27s disease (AD) research or clinical guidelines. We aimed to explore the use of structural brain MRI in AD/mild cognitive impairment (MCI) trials over the past 10 years and determine the frequency with which inclusion of standardized structural MRI acquisitions detects comorbid vascular and non-vascular pathologies. Methods: We systematically searched ClinicalTrials.gov for AD clinical trials to determine their neuroimaging criteria and then used data from an AD/MCI cohort who underwent standardized MRI protocols, to determine type and incidence of clinically relevant comorbid pathologies. Results: Of 210 AD clinical trials, 105 (50%) included structural brain imaging in their eligibility criteria. Only 58 (27.6%) required MRI. 16,479 of 53,755 (30.7%) AD participants were in trials requiring MRI. In the observational AD/MCI cohort, 141 patients met clinical criteria; 22 (15.6%) had relevant MRI findings, of which 15 (10.6%) were exclusionary for the study. Discussion: In AD clinical trials over the last 10 years, over two-thirds of participants could have been enrolled without brain MRI and half without even a brain CT. In a study sample, relevant comorbid pathology was found in 15% of participants, despite careful screening. Standardized structural MRI should be incorporated into NIA-AA diagnostic guidelines (when available) and research frameworks routinely to reduce diagnostic heterogeneity

    Ontario Neurodegenerative Disease Research Initiative (ONDRI): Structural MRI Methods and Outcome Measures

    Get PDF
    The Ontario Neurodegenerative Research Initiative (ONDRI) is a 3 years multi-site prospective cohort study that has acquired comprehensive multiple assessment platform data, including 3T structural MRI, from neurodegenerative patients with Alzheimer\u27s disease, mild cognitive impairment, Parkinson\u27s disease, amyotrophic lateral sclerosis, frontotemporal dementia, and cerebrovascular disease. This heterogeneous cross-section of patients with complex neurodegenerative and neurovascular pathologies pose significant challenges for standard neuroimaging tools. To effectively quantify regional measures of normal and pathological brain tissue volumes, the ONDRI neuroimaging platform implemented a semi-automated MRI processing pipeline that was able to address many of the challenges resulting from this heterogeneity. The purpose of this paper is to serve as a reference and conceptual overview of the comprehensive neuroimaging pipeline used to generate regional brain tissue volumes and neurovascular marker data that will be made publicly available online

    Investigating the contribution of white matter hyperintensities and cortical thickness to empathy in neurodegenerative and cerebrovascular diseases

    Get PDF
    Change in empathy is an increasingly recognised symptom of neurodegenerative diseases and contributes to caregiver burden and patient distress. Empathy impairment has been associated with brain atrophy but its relationship to white matter hyperintensities (WMH) is unknown. We aimed to investigate the relationships amongst WMH, brain atrophy, and empathy deficits in neurodegenerative and cerebrovascular diseases. Five hundred thirteen participants with Alzheimer’s disease/mild cognitive impairment, amyotrophic lateral sclerosis, frontotemporal dementia (FTD), Parkinson’s disease, or cerebrovascular disease (CVD) were included. Empathy was assessed using the Interpersonal Reactivity Index. WMH were measured using a semi-automatic segmentation and FreeSurfer was used to measure cortical thickness. A heterogeneous pattern of cortical thinning was found between groups, with FTD showing thinning in frontotemporal regions and CVD in left superior parietal, left insula, and left postcentral. Results from both univariate and multivariate analyses revealed that several variables were associated with empathy, particularly cortical thickness in the fronto-insulo-temporal and cingulate regions, sex (female), global cognition, and right parietal and occipital WMH. Our results suggest that cortical atrophy and WMH may be associated with empathy deficits in neurodegenerative and cerebrovascular diseases. Future work should consider investigating the longitudinal effects of WMH and atrophy on empathy deficits in neurodegenerative and cerebrovascular diseases

    Caregiving concerns and clinical characteristics across neurodegenerative and cerebrovascular disorders in the Ontario neurodegenerative disease research initiative

    Get PDF
    Objectives: Caregiving burdens are a substantial concern in the clinical care of persons with neurodegenerative disorders. In the Ontario Neurodegenerative Disease Research Initiative, we used the Zarit\u27s Burden Interview (ZBI) to examine: (1) the types of burdens captured by the ZBI in a cross-disorder sample of neurodegenerative conditions (2) whether there are categorical or disorder-specific effects on caregiving burdens, and (3) which demographic, clinical, and cognitive measures are related to burden(s) in neurodegenerative disorders?. Methods/Design: N = 504 participants and their study partners (e.g., family, friends) across: Alzheimer\u27s disease/mild cognitive impairment (AD/MCI; n = 120), Parkinson\u27s disease (PD; n = 136), amyotrophic lateral sclerosis (ALS; n = 38), frontotemporal dementia (FTD; n = 53), and cerebrovascular disease (CVD; n = 157). Study partners provided information about themselves, and information about the clinical participants (e.g., activities of daily living (ADL)). We used Correspondence Analysis to identify types of caregiving concerns in the ZBI. We then identified relationships between those concerns and demographic and clinical measures, and a cognitive battery. Results: We found three components in the ZBI. The first was “overall burden” and was (1) strongly related to increased neuropsychiatric symptoms (NPI severity r = 0.586, NPI distress r = 0.587) and decreased independence in ADL (instrumental ADLs r = −0.566, basic ADLs r = −0.43), (2) moderately related to cognition (MoCA r = −0.268), and (3) showed little-to-no differences between disorders. The second and third components together showed four types of caregiving concerns: current care of the person with the neurodegenerative disease, future care of the person with the neurodegenerative disease, personal concerns of study partners, and social concerns of study partners. Conclusions: Our results suggest that the experience of caregiving in neurodegenerative and cerebrovascular diseases is individualized and is not defined by diagnostic categories. Our findings highlight the importance of targeting ADL and neuropsychiatric symptoms with caregiver-personalized solutions

    Targeted copy number variant identification across the neurodegenerative disease spectrum

    Get PDF
    Background: Although genetic factors are known to contribute to neurodegenerative disease susceptibility, there remains a large amount of heritability unaccounted for across the diagnoses. Copy number variants (CNVs) contribute to these phenotypes, but their presence and influence on disease state remains relatively understudied. Methods: Here, we applied a depth of coverage approach to detect CNVs in 80 genes previously associated with neurodegenerative disease within participants of the Ontario Neurodegenerative Disease Research Initiative (n = 519). Results: In total, we identified and validated four CNVs in the cohort, including: (1) a heterozygous deletion of exon 5 in OPTN in an Alzheimer\u27s disease participant; (2) a duplication of exons 1–5 in PARK7 in an amyotrophic lateral sclerosis participant; (3) a duplication of \u3e3 Mb, which encompassed ABCC6, in a cerebrovascular disease (CVD) participant; and (4) a duplication of exons 7–11 in SAMHD1 in a mild cognitive impairment participant. We also identified 43 additional CNVs that may be candidates for future replication studies. Conclusion: The identification of the CNVs suggests a portion of the apparent missing heritability of the phenotypes may be due to these structural variants, and their assessment is imperative for a thorough understanding of the genetic spectrum of neurodegeneration

    The use of random forests to classify amyloid brain PET

    Get PDF
    Copyright © 2019 Wolters Kluwer Health, Inc. All rights reserved.Purpose: To evaluate random forests (RFs) as a supervised machine learning algorithm to classify amyloid brain PET as positive or negative for amyloid deposition and identify key regions of interest for stratification. Methods: The data set included 57 baseline 18F-florbetapir (Amyvid; Lilly, Indianapolis, IN) brain PET scans in participants with severe white matter disease, presenting with either transient ischemic attack/lacunar stroke or mild cognitive impairment from early Alzheimer disease, enrolled in a multicenter prospective observational trial. Scans were processed using the MINC toolkit to generate SUV ratios, normalized to cerebellar gray matter, and clinically read by 2 nuclear medicine physicians with interpretation based on consensus (35 negative, 22 positive). SUV ratio data and clinical reads were used for super- vised training of an RF classifier programmed in MATLAB. Results: A 10,000-tree RF, each tree using 15 randomly selected cases and 20 randomly selected features (SUV ratio per region of interest), with 37 cases for training and 20 cases for testing, had sensitivity = 86% (95% confidence in- terval [CI], 42%–100%), specificity = 92% (CI, 64%–100%), and classification accuracy = 90% (CI, 68%–99%). The most common features at the root node (key regions for stratification) were (1) left posterior cingulate (1039 trees), (2) left middle frontal gyrus (1038 trees), (3) left precuneus (857 trees), (4) right an- terior cingulate gyrus (655 trees), and (5) right posterior cingulate (588 trees). Conclusions: Random forests can classify brain PET as positive or negative for amyloid deposition and suggest key clinically relevant, regional features for classification.CIHR MITNEC C6 || Linda C Campbell Foundation || Lilly-Avid Radiopharmaceuticals

    The Use of Random Forests to Identify Brain Regions on Amyloid and FDG PET Associated With MoCA Score

    Get PDF
    Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.Purpose: The aim of this study was to evaluate random forests (RFs) to identify ROIs on 18F-florbetapir and 18F-FDG PET associated with Montreal Cognitive Assessment (MoCA) score. Materials and Methods: Fifty-seven subjects with significant white matter disease presenting with either transient ischemic attack/lacunar stroke or mild cognitive impairment from early Alzheimer disease, enrolled in a mul- ticenter prospective observational trial, had MoCA and 18F-florbetapir PET; 55 had 18F-FDG PET. Scans were processed using the MINC toolkit to gen- erate SUV ratios, normalized to cerebellar gray matter (18F-florbetapir PET), or pons (18F-FDG PET). SUV ratio data and MoCA score were used for su- pervised training of RFs programmed in MATLAB. Results: 18F-Florbetapir PETs were randomly divided into 40 training and 17 testing scans; 100 RFs of 1000 trees, constructed from a random subset of 16 training scans and 20 ROIs, identified ROIs associated with MoCA score: right posterior cingulate gyrus, right anterior cingulate gyrus, left precuneus, left posterior cingulate gyrus, and right precuneus. Amyloid in- creased with decreasing MoCA score. 18F-FDG PETs were randomly di- vided into 40 training and 15 testing scans; 100 RFs of 1000 trees, each tree constructed from a random subset of 16 training scans and 20 ROIs, identified ROIs associated with MoCA score: left fusiform gyrus, left precuneus, left posterior cingulate gyrus, right precuneus, and left middle orbitofrontal gyrus. 18F-FDG decreased with decreasing MoCA score. Conclusions: Random forests help pinpoint clinically relevant ROIs associ- ated with MoCA score; amyloid increased and 18F-FDG decreased with de- creasing MoCA score, most significantly in the posterior cingulate gyrus.CIHR MITNEC C6 || Linda C Campbell Foundation || Lilly-Avid Radiopharmaceuticals
    • 

    corecore