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1 	 | 	 INTRODUCTION

Neurodegenerative	diseases	are	a	collection	of	progressive	
conditions	 characterized	 by	 neuronal	 degeneration	 and	
protein	aggregation	within	the	brain.	Although	typically	
defining	 behavioral	 and/or	 cognitive	 phenotypes,	 such	
as	 Alzheimer's	 disease	 (AD),	 frontotemporal	 dementia	
(FTD),	 and	 mild	 cognitive	 impairment	 (MCI)	 or	 motor	
phenotypes,	such	as	amyotrophic	lateral	sclerosis	(ALS)	

and	Parkinson's	disease	(PD),	the	term	may	also	encom-
pass	 neurodegenerative	 phenotypes	 that	 result	 from,	 or	
present	alongside,	cerebrovascular	disease	(CVD).

Genetic	 factors	 can	 increase	 one's	 risk	 of	 developing	
neurodegenerative	 disease	 considerably,	 with	 relatively	
high	 heritability	 estimates	 across	 the	 various	 diagnoses	
(Cacace	 et	 al.,  2016;	 Greaves	 &	 Rohrer,  2019;	 Mejzini	
et	al., 2019).	However,	our	existing	understanding	of	the	
genetic	contributors	to	neurodegenerative	disease	fail	 to	
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Abstract
Background: Although	genetic	factors	are	known	to	contribute	to	neurodegen-
erative	disease	susceptibility,	there	remains	a	large	amount	of	heritability	unac-
counted	 for	 across	 the	 diagnoses.	 Copy	 number	 variants	 (CNVs)	 contribute	 to	
these	phenotypes,	but	their	presence	and	influence	on	disease	state	remains	rela-
tively	understudied.
Methods: Here,	we	applied	a	depth	of	coverage	approach	to	detect	CNVs	in	80	
genes	previously	associated	with	neurodegenerative	disease	within	participants	
of	the	Ontario	Neurodegenerative	Disease	Research	Initiative	(n = 519).
Results: In	total,	we	identified	and	validated	four	CNVs	in	the	cohort,	 includ-
ing:	 (1)	 a	 heterozygous	 deletion	 of	 exon	 5	 in	 OPTN	 in	 an	 Alzheimer's	 disease	
participant;	 (2)	a	duplication	of	exons	1–	5	 in	PARK7	 in	an	amyotrophic	 lateral	
sclerosis	participant;	(3)	a	duplication	of	>3 Mb,	which	encompassed	ABCC6,	in	
a	cerebrovascular	disease	(CVD)	participant;	and	(4)	a	duplication	of	exons	7–	11	
in	SAMHD1	in	a	mild	cognitive	impairment	participant.	We	also	identified	43	ad-
ditional	CNVs	that	may	be	candidates	for	future	replication	studies.
Conclusion: The	identification	of	the	CNVs	suggests	a	portion	of	the	apparent	
missing	heritability	of	 the	phenotypes	may	be	due	 to	 these	structural	variants,	
and	their	assessment	is	imperative	for	a	thorough	understanding	of	the	genetic	
spectrum	of	neurodegeneration.

K E Y W O R D S

cerebrovascular	disease,	copy	number	variants,	neurodegenerative	disease,	next-	generation	
sequencing
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reach	these	estimates,	leaving	a	large	amount	of	missing	
heritability	 (Cacace	 et	 al.,  2016;	 Hagenaars	 et	 al.,  2018;	
Keller	et	al., 2012;	Mejzini	et	al., 2019).	For	example,	while	
AD	displays	heritability	estimates	of	~70%,	depending	on	
age	of	disease	onset,	up	to	90%	of	cases	remain	genetically	
unexplained	(Cacace	et	al., 2016;	Karlsson	et	al., 2022).

Copy	number	variants	(CNVs)	are	large-	scale	deletions	
or	duplications	of	DNA	of	at	least	50	base	pairs	(bp)	in	length	
(Feuk	 et	 al.,  2006).	 While	 CNVs	 are	 generally	 common	
across	the	genome	(Redon	et	al., 2006),	when	they	involve	
genes,	 these	structural	variants	can	have	 large	phenotypic	
impacts,	including	affecting	gene	expression,	organization,	
and	dosage	(Stranger	et	al., 2007).	CNVs	have	been	shown	
to	contribute	to	neurodegenerative	disease	presentation,	in-
cluding	in	individuals	with	AD	(Cuccaro	et	al., 2017;	Ghani	
et	al., 2012;	Hooli	et	al., 2014);	ALS	(Morello	et	al., 2018);	
and	 PD	 (Nuytemans	 et	 al.,  2010).	 Yet	 studies	 identifying	
these	variants	in	neurodegenerative	disease	cohorts	are	rel-
atively	sparse,	potentially	due	to	the	previous	intricacies	of	
accurately	detecting	CNVs.	It	is	therefore	hypothesized	that	
some	of	the	missing	heritability	of	neurodegeneration	may	
be	accounted	for	by	these	large-	scale	variants.

Bioinformatics	algorithms	have	recently	made	the	iden-
tification	of	CNVs	more	accessible,	with	the	ability	to	de-
tect	variants	using	next-	generation	sequencing	(NGS)	and	a	
depth	of	coverage	(DOC)	assessment	(Iacocca	et	al., 2017).	
Here,	we	leveraged	this	approach	to	identify	CNVs	across	
the	participants	of	the	Ontario	Neurodegenerative	Disease	
Research	 Initiative	 (ONDRI),	 a	 multi-	cohort	 study	 aim-
ing	 to	 characterize	 a	 selection	 of	 neurodegenerative	 dis-
eases,	 including	AD,	ALS,	FTD,	MCI,	and	PD,	as	well	as	
CVD	 and	 its	 potential	 influence	 on	 neurodegeneration.	
Previously,	the	ONDRI	cohort	was	genetically	sequenced	
using	 the	 ONDRISeq	 NGS	 targeted	 panel,	 which	 covers	
80	 genes	 known	 to	 contribute	 to	 neurodegenerative	 dis-
eases	(Dilliott	et	al., 2018;	Farhan	et	al., 2016).	Following	
the	identification	of	CNVs	using	a	DOC	approach,	we	also	
aimed	to	validate	a	subset	of	CNVs	using	either	breakpoint	
analysis	or	exome	sequencing.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Study participants and ethical 
compliance

ONDRI	enrolled	520	individuals	from	clinical	sites	across	
Ontario	who	passed	preliminary	screening	and	were	each	
clinically	diagnosed	with	one	of	the	following	conditions:	
(1)	 AD;	 (2)	 ALS;	 (3)	 CVD;	 (4)	 FTD;	 (5)	 MCI;	 or	 (6)	 PD.	
Research	ethics	board	approval	was	obtained	 from	each	
of	the	11	participating	sites.	Descriptions	of	the	inclusion/
exclusion	criteria	of	ONDRI	participants	were	previously	

reported	(Farhan	et	al., 2017;	Sunderland	et	al., 2022).	All	
participants	provided	 informed	written	consent.	Clinical	
diagnoses	 and	 demographic	 data	 were	 obtained	 during	
participant	screening	and	baseline	assessment.	When	pos-
sible,	participants	provided	clinical	longitudinal	follow-	up	
assessment	yearly,	 for	up	 to	3	years	 (Farhan	et	al., 2017;	
Sunderland	et	al., 2022).

2.2	 |	 Next- generation 
targeted sequencing

Of	 the	 520	 enrolled	 participants,	 519	 participants	 had	 a	
blood	 sample	 collected,	 from	 which	 genomic	 DNA	 was	
extracted.	 DNA	 was	 also	 obtained	 from	 189	 cognitively	
normal	 elderly	 controls	 from	 the	 GenADA	 study	 (Li	
et	al., 2008).

All	ONDRI	participant	and	control	DNA	samples	were	
subjected	 to	 targeted	 NGS	 using	 the	 ONDRISeq	 neuro-
degenerative	 disease	 gene	 panel,	 as	 previously	 described	
(Dilliott	et	al., 2018).	DNA	samples	were	pooled	and	paired-	
end	NGS	was	performed	using	the	MiSeq	Personal	Genome	
Sequencer	 (Illumina,	 San	 Diego,	 CA,	 United	 States)	 and	
MiSeq	Reagent	Kit	v3.	Raw	sequencing	data	FASTQ	 files	
were	 imported	 into	 CLC	 Bio	 Genomics	 Workbench	 v10	
(CLC	Bio,	Aarhus,	Denmark)	to	perform	preprocessing	and	
variant	annotation,	which	produced	a	variant	 calling	 for-
mat	 (VCF)	 file	and	binary	alignment	map	 (BAM)	 file	 for	
each	participant.	Read	mapping	was	performed	using	the	
human	reference	genome	GRCh37/hg19.

2.3	 |	 CNV detection

The	 CNV	 Caller	 tool,	 an	 application	 within	 VarSeq®	
(v1.4.3;	Golden	Helix,	Bozeman,	MT),	was	used	to	detect	
CNVs	 from	 ONDRISeq-	generated	 data.	 The	 CNV	 Caller	
tool	employs	a	normalized	depth	of	coverage	algorithm,	
such	 that	 increase	 in	 sample	 coverage	 in	 comparison	 to	
a	set	of	reference	samples	suggest	a	gain	of	copy	number,	
and	decrease	in	coverage	suggests	a	loss	of	copy	number.

The	 ONDRISeq	 browser	 extensible	 data	 (BED)	 file	
was	imported	into	VarSeq®,	as	well	as	the	VCF	and	BAM	
files	of	the	189	control	samples	from	which	the	algorithm	
selected	48	 to	use	as	a	 reference	 set	with	 the	 lowest	per-
cent	difference	in	coverage	data	compared	to	each	ONDRI	
sample.	 The	 algorithm	 excluded	 control	 samples	 in	 the	
reference	set	with	>20%	difference	in	coverage	compared	
with	 the	 samples	of	 interest.	The	matched	 reference	 sets	
also	corrected	for	GC-	content	bias	and	regions	exhibiting	
inaccurate	 mapping.	 By	 comparing	 to	 the	 reference	 set,	
the	CNV	Caller	tool	was	used	to	identify	CNVs	across	the	
519	 ONDRI	 participants.	 A	 DOC	 ratio	 and	 z-	score	 were	
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computed	for	each	target	region	covered	by	the	NGS	panel	
within	each	ONDRI	sample.	The	DOC	ratios	measured	the	
normalized	 DOC	 of	 the	 sample	 of	 interest	 compared	 to	
the	normalized	mean	DOC	of	 the	 reference	set,	whereas	
z-	scores	measured	the	number	of	standard	deviations	each	
target	region's	DOC	was	from	the	normalized	mean	DOC	
of	the	reference	set.	Additionally,	the	CNV	Caller	tool	ex-
amined	 single	 nucleotide	 polymorphism	 (SNP)	 heterozy-
gosity	by	examining	variant	allele	frequencies	across	target	
regions	to	provide	evidence	for	suspected	CNVs,	as	previ-
ously	described	(Iacocca	et	al., 2017).	The	CNV	Caller	tool	
assigned	each	suspected	CNV	an	average	DOC	ratio,	aver-
age	z-	score,	and	a	p-	value.	CNVs	detected	using	ONDRISeq	
data	are	referred	to	as	“potential	CNVs”.

2.4	 |	 Deletion confirmation using 
breakpoint analysis

To	verify	the	presence	of	a	partial	OPTN	(OMIM:	602432;	
NG_012876.1)	 gene	 deletion,	 primers	 were	 designed	 to	
flank	 regions	 surrounding	 putative	 deletion	 breakpoints	
and	used	for	PCR	amplification	of	the	mutant	allele.	The	
Expand	20	kbplus	PCR	system	was	used	for	DNA	amplifi-
cation	 (Roche,	Basel,	Switzerland).	Forward	 (F3)	and	re-
verse	 (R1)	 primers	 flanking	 the	 deletion	 junction	 were:	
F3	 5′-	GTGACTCCATCACTCTGAACCTCC	 and	 R1	
5′-	CGAGTCTTCCTTCACATACGTGCC.	 Gel	 electropho-
resis	of	the	PCR	product	provided	a	visual	confirmation	of	
the	mutant	allele.

Once	 deletion	 breakpoints	 were	 identified,	 con-
firmation	 primers	 (P1:5′-	TCCCTTGACATTTGCAGT	
GGAATC,	 P2:	 5′-	ACTGAGAGAACAGACAAGGTCAAC,	
P4:	 5′-	GGTCACTTAGGGAACAAGATAGTC)	 spanning	
proximal	 and	 distal	 breakpoints	 were	 designed	 for	 PCR	
and	Sanger	sequencing	to	verify	the	deletion	breakpoint	
sequences	 for	 the	 wild	 type	 and	 mutant	 alleles.	 Thirty	
seconds	 of	 extension	 time	 for	 PCR	 cycles	 were	 used	 to	
achieve	 amplification	 of	 the	 normal	 allele	 using	 primer	
pair	 P1	 and	 P2,	 while	 primer	 pair	 P1	 and	 P4	 amplified	
the	 mutant	 allele.	 Electropherograms	 were	 analyzed	
using	 the	 Applied	 Biosystems	 SeqScape	 Software	 (v2.6,	
Thermo	Fischer	Scientific,	Waltham,	MA,	USA)	with	the	
reference	sequence	obtained	from	the	National	Center	for	
Biotechnology	 Information	 GenBank	 database	 (https://
www.ncbi.nlm.nih.gov/genba	nk/).

2.5	 |	 Duplication confirmation using 
whole- exome sequencing

To	 validate	 presence	 of	 potential	 duplications,	 six	 sam-
ples,	 each	 with	 at	 least	 one	 potential	 duplication,	 were	

selected	 for	whole-	exome	sequencing	(WES).	DNA	sam-
ples	 were	 sent	 to	 the	 McGill	 University	 and	 Genome	
Quebec	Innovation	Centre	(MUGQIC)	for	WES	using	the	
HiSeq	4000	instrument	(Illumina)	and	Roche	Nimblegen	
chemistry	(Roche,	Basel,	Switzerland).	FASTQ	files	were	
again	 imported	 into	 CLC	 Bio	 to	 perform	 preprocessing	
and	 variant	 annotation	 to	 produce	 a	 VCF	 file	 and	 BAM	
file	for	each	participant.

VCF	and	BAM	files	of	the	six	ONDRI	participants	and	
the	BED	file	that	defined	the	Roche	Nimblegen	chemis-
try	target	regions	were	imported	into	VarSeq®,	along	with	
VCF	and	BAM	files	from	WES	of	eight	reference	samples	
obtained	from	cognitively	normal	individuals	diagnosed	
with	atrial	fibrillation	and	sequenced	on	the	same	HiSeq	
4000	 run	 at	 the	 MUGQIC.	 Five	 reference	 samples	 were	
selected	by	the	algorithm	based	on	similarity	of	the	nor-
malized	coverage	to	the	samples	of	interest,	as	described	
above.	 Again,	 the	 CNV	 Caller	 tool	 applied	 a	 DOC	 ap-
proach	and	computed	a	DOC	ratio,	z-	score,	and	p-	value	
for	each	detected	CNV.

3 	 | 	 RESULTS

3.1	 |	 Study participants and ONDRISeq 
CNV analysis

Using	the	VarSeq®	CNV	Caller	tool,	at	least	one	poten-
tial	 CNV	 was	 detected	 in	 44	 of	 the	 total	 519	 ONDRI	
participants	screened	(8.5%;	Table 1).	A	 total	of	47	po-
tential	CNVs	were	detected	among	the	44	participants,	
including	37	duplications	and	10	heterozygous	deletions	
(Appendix	Table	A1).	The	CNVs	ranged	in	size	from	150	
to	74,407	bp.

3.2	 |	 Deletion confirmation using 
breakpoint analysis

Of	 the	 10	 potential	 heterozygous	 deletions	 identified,	
one	 was	 chosen	 for	 breakpoint	 analysis	 based	 on	 our	
high	confidence	in	the	variant	call,	as	determined	by	the	
metrics	 produced	 by	 the	 CNV	 Caller	 algorithm	 (DOC	
ratio  =  0.487;	 z-	score  =  −6.851;	 p-	value  =  1.10E−12).	
Specifically,	 the	 chosen	 heterozygous	 deletion	 en-
compassed	 exon	 5	 of	 OPTN.	 Sanger	 sequencing	 across	
the	 CNV	 breakpoints	 confirmed	 the	 presence	 of	 a	
4969	bp	 deletion	 in	 OPTN	 that	 encompassed	 all	 of	
exon	 five,	 with	 proximal	 and	 distal	 breakpoints	 at	
chr10:	 13,152,598	 and	 chr10:	 13,157,566,	 respectively	
(Figure 1).	The	deletion	was	carried	by	 subject	1,	who	
was	diagnosed	with	AD	(Table 2).	Although	a	deletion	
with	 these	 exact	 breakpoints	 has	 not	 been	 previously	

https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
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reported	within	DECIPHER	(Firth	et	al.,  2009)	 (v11.7)	
or	gnomAD	(Karczewski	et	al., 2020)	 (v2.1	non-	neuro;	
https://gnomad.broad	insti	tute.org/),	 a	 similar	 deletion	

was	 identified	 in	one	East-	Asian	 individual	within	 the	
gnomAD	cohort	(MAF = 4.14E−4)	with	breakpoints	of	
chr10:	13,152,822	and	chr10:	13,157,646.

T A B L E  1 	 Demographics	and	CNV	carrier	status	of	the	total	ONDRI	cohort

Cohort Samples
Mean age  
(years ± SD) Male: Female

Samples carrying 
potential CNVs (%)

Samples carrying 
validated CNVs (%)

ONDRI 519 68.6 ±	7.6 341:172 44	(8.5) 4	(0.8)
AD 41 71.8 ±	8.0 24:17 4	(9.8) 1	(2.4)
ALS 40 62.0 ±	8.7 24:16 4	(10.0) 1	(2.5)
CVD 161 69.2 ±	7.4 109:50 22	(13.7) 1	(0.6)
FTD 53 67.8 ±	7.1 34:19 1	(1.9) 0
MCI 85 70.6 ±	8.3 45:40 6	(7.1) 1	(1.2)
PD 139 67.8 ±	6.4 106:30 7	(5.0) 0

Abbreviations:	AD,	Alzheimer's	disease;	ALS,	amyotrophic	lateral	sclerosis;	CNV,	copy	number	variant;	CVD,	cerebrovascular	disease;	FTD,	frontotemporal	
dementia;	MCI,	mild	cognitive	impairment;	ONDRI,	Ontario	neurodegenerative	disease	research	initiative;	PD,	Parkinson's	disease;	SD,	standard	deviation.

F I G U R E  1  Validation	of	single-	exon	deletion	in	OPTN	of	subject	1	with	Alzheimer's	disease.	(a)	Screen	capture	of	ONDRISeq-	generated	
data	from	subject	1	processed	by	the	VarSeq®	v1.4.3	CNV	caller	tool	identified	a	potential	heterozygous	deletion,	as	indicated	by	a	drop	in	
DOC	ratio.	The	bottom	section	shows	the	OPTN	gene	and	location	of	primers	used	to	confirm	and	sequence	across	the	breakpoint.	(b)	Sanger	
sequencing	results	for	the	deletion	junction.	Results	from	a	cognitively	normal	control	are	presented	on	the	top,	with	results	from	subject	1	on	the	
bottom.	Internal	sequence	missing	in	the	deleted	allele	is	written	in	gray.	(c)	Gel	electrophoresis	of	PCR	products	across	the	deletion	breakpoint.	
The	top	gel	shows	amplification	products	generated	using	F3	and	R1.	The	normal	sequence	distance	between	primer	pair	F3	and	R1	generated	a	
product	size	of	6116	bp;	however,	PCR	amplification	of	subject	1’s	genomic	DNA	using	F3	and	R1	generated	a	product	size	of	1147	bp,	suggesting	
a	4969	bp	deletion.	The	bottom	gel	contains	amplification	products	generated	using	primer	pairs	(i)	P1,	located	in	the	proximal	side	of	the	
suspected	breakpoint,	and	P2,	located	within	the	deleted	fragment,	as	well	as	(ii)	P1	and	P4,	located	on	the	distal	side	of	the	suspected	breakpoint.	
Both	the	normal	control	(N)	and	proband	(P)	demonstrate	amplification	(367	bp)	for	the	proximal	primer	pair.	Amplification	(291	bp)	with	P1	
and	P4	is	seen	in	the	proband,	but	not	the	normal	control.	For	individuals	without	the	deletion,	the	span	between	P1	and	P4	would	be	too	large	to	
amplify	understandard	conditions;	thus,	if	amplification	occurred,	it	confirms	the	presence	of	a	large	deletion	between	the	primer	pair.

https://gnomad.broadinstitute.org/
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The	 remaining	 nine	 heterozygous	 deletions	 did	 not	
undergo	 breakpoint	 analysis	 due	 to	 lower	 confidence	
in	the	reliability	of	the	CNV	calls,	as	determined	by	the	
CNV's	individual	metrics	and/or	relatively	short	span.

3.3	 |	 Duplication confirmation using 
whole- exome sequencing

Of	the	participants	harboring	the	37	potential	duplications,	
six	were	of	 relatively	high	confidence,	as	determined	by	
their	DOC	ratios,	z-	scores,	and	p-	values.	Following	WES	
of	 the	 samples	 and	 subsequent	 analysis	 with	 the	 CNV	
Caller	tool,	we	identified	and	validated	three	participants	
as	carriers	of	large-	scale	duplications	(Table 2).

Subject	2	was	diagnosed	with	ALS	and	harbored	a	du-
plication	 spanning	 2731	bp	 that	 encompassed	 the	 first	
five	 exons	 of	 PARK7	 (chr1:8,021,464–	8,031,243;	 OMIM:	
602533;	 NG_008271.1).	 The	 duplication	 was	 not	 identi-
fied	in	DECIPHER	or	gnomAD,	but	a	similar	duplication	
had	been	previously	reported	as	a	variant	of	uncertain	sig-
nificance	for	PD	within	ClinVar.	Subject	3	was	diagnosed	
with	 CVD	 and	 harbored	 a	 duplication	 encompassing	 the	
entirety	of	ABCC6	(OMIM:	603234;	NG_007558.3),	which	
was	 detected	 using	 the	 ONDRISeq	 analysis;	 however,	
WES	revealed	the	duplication	also	encompassed	42	other	
neighboring	genes,	 including	15	protein-	coding	genes,	12	
pseudogenes,	11	microRNA	encoding	genes,	and	four	non-
coding	RNA	genes	(Appendix	Table	A2).	In	total,	the	dupli-
cation	 spanned	over	3 Mb	 (chr16:15,185,138–	18,418,365).	
Although	 the	 specific	 CNV	 we	 identified	 has	 not	 been	
previously	reported,	a	full-	gene	duplication	of	ABCC6	was	
reported	 in	 gnomAD.	 The	 duplication	 was	 identified	 in	
18	 gnomAD	 samples	 (allele	 frequency  =  1.08E−3);	 how-
ever,	all	individuals	were	under	the	age	of	60	years,	and	it	
remains	unclear	whether	any	of	the	individuals	presented	
with	features	of	CVD.	The	duplication	was	also	not	reported	
in	 DECIPHER;	 however,	 three	 individuals	 were	 found	 to	
carry	marginally	smaller	duplications	of	just	under	3 Mb,	
and	one	individual	carried	a	similarly	sized	duplication	that	
was	upstream	of	the	one	we	identified,	all	of	which	encom-
passed	ABCC6.	Interestingly,	all	four	of	these	duplications	
had	been	classified	as	likely	pathogenic	for	phenotypes	in-
volving	global	developmental	delay.	Finally,	subject	4	was	
diagnosed	with	MCI	and	harbored	a	duplication	of	exons	
7–	11	 of	 SAMHD1	 (chr20:35,539,371–	35,548,172;	 OMIM:	
606754;	NG_017059.1),	which	was	not	previously	reported	
in	DECIPHER	or	gnomAD.

One	 of	 the	 six	 samples	 sent	 for	 WES	 exhibited	 un-
mappable	 and	 incorrectly	 mapped	 reads	 failing	 to	 pass	
the	quality	control	standards	of	the	CNV	Caller	tool	algo-
rithm.	Validation	of	 the	duplication	carried	by	this	 indi-
vidual	remains	inconclusive.

Importantly,	none	of	 the	confirmed	CNVs	were	 iden-
tified	in	any	of	the	189	cognitively	normal	elderly	control	
samples.	The	four	confirmed	CNV	carriers	did	not	harbor	
additional	 pathogenic	 single	 nucleotide	 variants	 in	 the	
neurodegenerative	disease-	associated	genes	encompassed	
by	ONDRISeq	relevant	to	their	diagnoses.	Clinical	case	in-
formation	of	subjects	1–	4	is	presented	in	Table 2.

4 	 | 	 DISCUSSION

Of	 the	 519	 individuals	 diagnosed	 with	 neurodegenera-
tive	disease	and/or	CVD	enrolled	in	the	ONDRI	study,	we	
identified	 44	 (8.5%)	 with	 potential	 CNVs	 in	 the	 80	 neu-
rodegenerative	 disease-	associated	 genes	 covered	 by	 the	
ONDRISeq	panel,	of	which	 four	CNVs,	each	 in	a	differ-
ent	participant	(0.8%),	were	validated.	Breakpoint	analy-
sis	confirmed	the	presence	of	a	heterozygous	deletion	in	
OPTN	harbored	by	an	individual	with	AD,	and	WES	con-
firmed	 the	 presence	 of	 duplications	 in	 PARK7,	 ABCC6,	
and	 SAMHD1,	 in	 individuals	 diagnosed	 with	 AD,	 CVD,	
and	MCI,	respectively.	To	our	knowledge,	all	four	CNVs	
were	novel	with	respect	to	each	carrier's	diagnosis.

Among	 the	 validated	 CNVs,	 the	 heterozygous	 deletion	
of	exon	5	in	OPTN	was	the	only	CNV	we	confirmed	using	
Sanger-	based	 breakpoint	 analysis	 and	 was	 identified	 in	 a	
participant	with	AD.	OPTN	encodes	optineurin,	and	patho-
genic	variants	in	the	gene	are	associated	with	both	autoso-
mal	dominant,	adult-	onset	glaucoma,	and	ALS	(Maruyama	
et	al., 2010;	Schilter	et	al., 2015).	Interestingly,	two	studies	
have	 reported	 similar	heterozygous	deletions	of	 exon	5	of	
OPTN	in	Japanese	ALS	cohorts	(Iida	et	al., 2012;	Maruyama	
et	al., 2010).	It	has	been	hypothesized	that	there	may	be	a	
relationship	between	OPTN,	glaucoma,	and	AD,	due	to	the	
high	 rate	 of	 co-	morbidity	 between	 glaucoma	 and	 AD,	 as	
well	as	the	observation	of	optineurin	in	neurofibrillary	tau	
tangles—	a	hallmark	of	AD	pathology	 (Liu	&	Tian, 2011).	
Yet	 AD	 patients	 with	 pathogenic	 OPTN	 variants	 have	
not	 been	 previously	 observed.	 Herein,	 subject	 1	 exhibited	
gradual	cognitive	decline	according	to	Montreal	Cognitive	
Assessment	(MoCA)	scoring,	but	did	not	demonstrate	ALS-	
associated	motor	symptoms.	Although	no	glaucoma	diagno-
sis	was	documented,	 the	participant	did	report	vision	 loss	
and	presented	with	cataracts	at	baseline	assessment.	It	re-
mains	unclear	whether	the	observation	of	the	partial	OPTN	
heterozygous	deletion	may	suggest	a	novel	relationship	be-
tween	the	gene	and	AD	or	whether	the	variant	may	be	con-
tributing	to	the	participant's	ocular	phenotypes,	and	further	
functional	analyses	are	required.

We	confirmed	the	presence	of	a	duplication	spanning	
exons	1–	5	of	PARK7	in	a	participant	diagnosed	with	ALS	
using	 WES,	 although	 breakpoints	 could	 not	 be	 deter-
mined.	 PARK7,	 otherwise	 referred	 to	 as	 DJ- 1,	 encodes	 a	
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conserved	protein	belonging	to	the	peptidase	C56	family	
and	 is	 thought	 to	 inhibit	 aggregation	 of	 α-	synuclein—	a	
hallmark	 of	 PD	 pathology—	as	 well	 as	 protect	 neurons	
against	oxidative	 stress	and	cell	death	 (Lev	et	 al.,  2006).	
Mutations	in	PARK7	cause	autosomal	recessive	early-	onset	
PD	(EOPD)(Bonifati	et	al., 2003).	Previously,	duplications	
of	the	first	five	exons	of	PARK7	have	been	associated	with	
EOPD	(Macedo	et	al.,  2009),	 and	small-	scale	variants	 in	
the	 gene	 have	 been	 associated	 with	 autosomal	 recessive	
Guamanian	 ALS/EOPD,	 which	 presents	 with	 hetero-
geneous	 symptoms	 including	 muscular	 atrophy,	 cogni-
tive	 decline,	 and	 tremor	 or	 rigidity	 (Annesi	 et	 al.,  2005;	
Hanagasi	et	al., 2016).	However,	no	previous	associations	
of	PARK7	duplications	have	been	reported	in	patients	di-
agnosed	with	ALS	alone.	While	the	participant	presented	
herein	 did	 report	 slight	 tremors	 at	 baseline,	 which	 pro-
gressed	to	moderate	tremors	upon	3-	year	follow-	up	based	
on	 the	 MDS	 Unified	 Parkinson's	 Disease	 Rating	 Scale	
(MDS-	UPDRS),	they	had	no	further	clinical	signs	of	par-
kinsonism	and	had	a	Hoehn	and	Yahr	score	of	zero	both	
at	baseline	and	follow-	up.	Yet	the	involvement	of	PARK7	
in	ALS	cannot	be	ruled	out,	as	the	DJ-	1	protein	is	involved	
in	sensing	oxidative	stress	 (Lev	et	al., 2006),	and	PARK7	
variants	 may	 therefore	 increase	 risk	 of	 oxidative	 stress,	
which	is	implicated	as	a	major	component	in	ALS	patho-
logic	mechanisms	(Barber	&	Shaw, 2010).	Our	study	is	the	
first	to	report	a	case	in	which	a	structural	variant	affecting	
PARK7	may	have	a	role	in	a	non-	parkinsonism	condition;	
however,	 functional	analyses	are	required	for	further	 in-
vestigation	of	this	relationship.

Furthermore,	 a	 CVD	 participant	 presented	 with	 a	
full-	gene	duplication	of	ABCC6.	Confirmation	of	the	du-
plication	using	WES	found	the	CNV	spanned	over	3 Mb	
encompassing	43	total	genes.	Pathogenic	variants	within	
ABCC6,	 including	 CNVs,	 cause	 pseudoxanthoma	 elas-
ticum	 (PXE),	 a	 rare	 autosomal	 recessive	 disorder	 char-
acterized	 by	 elastic	 tissue	 fragmentation	 and	 arterial	
calcification	 (Bergen	 et	 al.,  2000;	 Kringen	 et	 al.,  2015;	
Ringpfeil	 et	 al.,  2000).	 It	 is	 not	 uncommon	 for	 PXE	 pa-
tients	 to	 present	 with	 cerebral	 artery	 calcification,	 and	
studies	 have	 shown	 that	 ischemic	 CVD	 is	 highly	 prev-
alent	 in	 patients	 with	 PXE	 (Kauw	 et	 al.,  2017;	 Pavlovic	
et	al., 2005).	Here,	 the	participant	harboring	 the	ABCC6	
duplication	 presented	 with	 a	 history	 of	 conditions	 char-
acteristic	of	PXE,	including	hypertension,	atherosclerosis,	
stroke,	 mood	 disorders,	 and	 ocular	 features	 such	 as	 cat-
aracts.	 The	 participant	 also	 reported	 that	 all	 immediate	
family	members	had	a	history	of	heart	disease,	albeit	seg-
regation	analysis	of	 the	duplication	was	not	possible.	To	
our	knowledge,	this	is	the	first	reporting	of	a	large-	scale	
duplication	involving	ABCC6	in	an	individual	with	CVD.	
Although	 this	 CNV	 spanned	 42	 other	 genes	 (Appendix	
Table	A2),	there	is	currently	no	evidence	suggesting	that	

structural	variation	of	these	other	genes	contributed	to	the	
participant's	disease	presentation.

Finally,	 we	 identified	 and	 validated	 a	 duplication	 of	
exons	7–	11	in	SAMHD1	in	a	subject	with	MCI.	No	reports	
of	 neurodegenerative	 symptoms	 have	 been	 made	 in	 pa-
tients	 demonstrating	 similar	 CNVs	 previously.	 Further	
evaluation	 of	 this	 CNV	 will	 be	 needed	 to	 gain	 a	 better	
understanding	 of	 its	 contribution	 to	 neurodegeneration,	
specifically	cognitive	impairment.

Although	we	have	validated	the	presence	of	four	CNVs	
across	 the	 ONDRI	 participants,	 we	 confirmed	 the	 exact	
breakpoints	of	only	one,	namely	the	deletion	of	exon	5	in	
OPTN.	Identification	of	CNVs	using	NGS	is	limited	to	only	
determine	which	NGS	probes	are	affected	by	the	structural	
variant,	 thereby	 requiring	 further	 analysis	 to	 determine	
CNV	breakpoints.	However,	breakpoint	analysis	remains	
challenging	for	duplications,	as	it	is	unclear	whether	the	
duplicated	sequence	will	appear	in	tandem	with	the	origi-
nal	sequence,	or	will	be	inserted	unpredictably	into	a	dis-
tal	 region	 of	 the	 genome.	Therefore,	 we	 were	 unable	 to	
determine	the	exact	location	of	the	identified	duplications	
and	 whether	 they	 may	 be	 interrupting	 other	 important	
genomic	sequences	that	could	contribute	to	the	neurode-
generative	phenotypes.	Further,	43	CNVs	identified	using	
DOC	analysis	of	ONDRISeq	data	remain	unvalidated	with	
average	DOC	ratios,	average	z-	scores,	and	p-	values	of	un-
known	 confidence.	 Confirmation	 of	 these	 CNVs	 using	
alternative	methods	will	be	required.	Despite	these	limita-
tions,	DOC	CNV	detection	with	targeted	NGS	continues	to	
produce	comprehensive,	high-	quality	data,	while	remain-
ing	more	time-		and	cost-	effective	than	the	“gold-	standard”	
Sanger	sequencing	or	multiplex	ligation-	dependent	probe	
amplification	approaches	(Iacocca	et	al., 2017).

5 	 | 	 CONCLUSION

In	 summary,	 we	 were	 able	 to	 identify	 and	 validate	 po-
tentially	pathogenic,	novel	CNVs	in	four	individuals	who	
were	diagnosed	with	neurodegenerative	disease	or	CVD.	
Further,	we	present	an	additional	43	potential	CNVs	that	
will	be	candidates	for	future	replication	studies.	Although	
functional	 analyses	 are	 still	 required	 to	 determine	 how	
the	 CNVs	 may	 contribute	 to	 pathologic	 mechanisms	 of	
disease,	the	results	highlight	the	need	for	further	investi-
gation	into	structural	variants	and	their	impact	on	neuro-
degenerative	and	cerebrovascular	phenotypes.	The	CNVs	
may	account	for	a	portion	of	the	missing	heritability	ob-
served	across	the	individual	diagnoses.	Assessing	the	full	
spectrum	of	potential	variants	that	can	contribute	to	the	
disease	states	is	imperative	for	a	complete	understanding	
of	the	genetic	etiology	of	these	highly	prevalent	and	pro-
gressive	conditions,	which,	in	due	course,	will	contribute	
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to	more	accurate	genetic	diagnostic	screening	and	thera-
peutic	targeting.
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T A B L E  A 2 	 Genes	encompassed	by	the	>3 mb	duplication	harbored	by	subject	3

Gene type Genes

MicroRNA	encoding	genes MIR1972- 1; MIR6511B2; MIR3180- 4; MIR6506; MIR484; MIR3179- 2; MIR3670- 2; MIR3180- 2; 
MIR6511A2; MIR6770- 2; MIR6511A3

Noncoding	RNA	encoding	genes LOC100505915; PKD1P6- NPIPP1; PKD1P1; LOC102723692

Protein-	coding	genes PDXPC1; NTAN1; RRN3; NPIPA5; MPV17L; C16orf45; KIAA0430; NDE1; MYH11; FOPNL; 
ABCC1; ABCC6; NOMO3; NPIPA7; XYLT1; NPIPA8

Pseudogenes LOC728138; NPIPP1; PKD1P6; RNU6- 213P; RPL15P20; RPL17P40; PKD1P2; LOC100133127; 
LOC441750; LOC100421029; RPL7P47; LOC100133137
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