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The use of random forests to identify brain regions on 

amyloid and FDG PET associated with MoCA score 

 

 

Abstract 

Purpose: To evaluate random forests (RFs) to identify regions-of-interest (ROIs) on 18F-Florbetapir and 

18F-FDG PET associated with Montreal Cognitive Assessment (MoCA) score.  

Materials and methods: Fifty-seven subjects with significant white matter disease presenting with either 

transient ischemic attack/lacunar stroke or mild cognitive impairment from early Alzheimer disease, 

enrolled in a multicenter prospective observational trial, had MoCA and 18F-Florbetapir PET; 55 had 18F-

FDG PET. Scans were processed using the MINC toolkit to generate SUV ratios, normalized to cerebellar 

grey matter (18F-Florbetapir PET) or pons (18F-FDG PET). SUV ratio data and MoCA score were used for 

supervised training of RFs programmed in MATLAB. 

Results: 18F-Florbetapir PETs were randomly divided into 40 training and 17 testing scans; 100 RFs of 

1,000 trees, constructed from a random subset of 16 training scans and 20 ROIs, identified ROIs 

associated with MoCA score: Right posterior cingulate gyrus, Right anterior cingulate gyrus, Left 

precuneus, Left posterior cingulate gyrus and Right precuneus. Amyloid increased with decreasing MoCA 

score. 18F-FDG PETs were randomly divided into 40 training and 15 testing scans; 100 RFs of 1,000 

trees, each tree constructed from a random subset of 16 training scans and 20 ROIs, identified ROIs 

associated with MoCA score: Left fusiform gyrus, Left precuneus, Left posterior cingulate gyrus, Right 

precuneus and Left middle orbitofrontal gyrus. 18F-FDG decreased with decreasing MoCA score. 

Conclusions: RFs help pinpoint clinically relevant ROIs associated with MoCA score; amyloid increased 

and 18F-FDG decreased with decreasing MoCA score, most significantly in the posterior cingulate gyrus.  
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Introduction 

Cognitive impairment related to Alzheimer’s dementia (AD) is a slowly progressive condition of 

multi-factorial etiology where the diagnosis is based on clinical evaluation with imaging playing a key 

supportive role [1-5]. Mild cognitive impairment (MCI) refers to a state where there have been subjective 

complaints of gradual memory loss for 6 months or more, objective memory loss documented on clinical 

memory tests and preserved functioning in activities of daily living. It is estimated the prevalence of MCI 

is 7% in 60-64 year-old subjects rising to 25% in 80-84 year-old subjects. About 10-15% of subjects with 

MCI progress to dementia annually with more than half progressing to dementia in 5 years [6,7]. 

Dementia refers to a neurodegenerative condition where loss of cognitive function is sufficient to impair 

the activities of daily living. The World Health Organization (WHO) estimates 50 million people have 

dementia worldwide [8]. Typically, screening instruments are used to evaluate subjects with cognitive 

complaints and guide referral for further investigation. The most common screening instruments are the 

Mini-Mental State Examination (MMSE) [9] and Montreal Cognitive Assessment (MoCA) [10].  

Developed in 2005, the MoCA is a cognitive screening tool that can distinguish patients who are 

cognitively normal from those with MCI and dementia [10]. It is a one-page 30-point test administered in 

about 10 minutes, and available at www.mocatest.org. A point is added for subjects with a MoCA score 

below 30 and 12 or less years of education. In general, MoCA includes more executive functioning tasks 

than those in the MMSE, making it more sensitive for early cognitive decline. Correlation of MoCA with 

MMSE is high in cognitively normal and demented subjects, MoCA is often preferred for evaluation of 

subjects with MCI. Using a cut-off MoCA score of 26 or above as normal, gives sensitivity and 

specificity for MCI of 90% and 87%, respectively. Also, the specificity of MoCA to exclude subjects with 

normal cognition is estimated to be over 85% [10]. Recently, it has been suggested that using a score of 

26 or above as normal leads to high false positive rates, particularly in older subjects or those with limited 

education. A meta-analysis by Carson et al., suggested a score of 23 may be preferable to differentiate 

normal subjects from subjects with MCI [11]. To date, the exact MoCA score to use is a topic of debate. 

http://www.mocatest.org/
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Although the MoCA cognitive screening tool has gained widespread popularity in clinical 

practice, there is limited data on anatomical change, amyloid deposition and metabolic function in brain 

regions associated with MoCA score. Ritter et al. showed a correlation between lower MoCA score and 

hippocampal atrophy [12]. In this paper, we explore the use of random forests (RFs) with 18F-Florbetapir 

and 18F-FDG PET to: 1. Suggest regions of the brain predictive of MoCA score and 2. Explore 

associations of amyloid deposition and glucose uptake in these regions with MoCA score. 

 

Materials and Methods 

Fifty-seven subjects with severe white matter hyperintensity volume (WMH), presenting with 

MCI from early Alzheimer Disease or transient ischemic attack/lacunar stroke, were enrolled in a 

multicenter prospective observational trial through 9 participating sites as part of the C6 project in the 

Medical Imaging Network of Canada [13-15]. Of the 57 subjects, 38 were recruited through memory 

clinics and 19 were recruited through stroke prevention clinics. Inclusion criteria included a MMSE of 

greater than 20; significant medical or other neurological conditions were cause for exclusion, among 

other criteria [13,14]. Each subject had a MoCA score, 18F-Florbetapir brain PET and a 3T MRI; 55 also 

had 18F-FDG brain PET. The MoCA score was considered abnormal if < 25 [16]. 

Brain PET scans were obtained using scanners at participating sites with consistency of data 

across sites maintained by adherence to a standard quality assurance program and use of a common 

imaging protocol, including the main ADNI2 structural protocol [17]. For the 18F-Florbetapir brain PET, 

the imaging protocol stipulated 370 MBq (10 mCi +/- 10%) 18F-Florbetapir be administered intravenously 

followed by 20 minutes of dynamic imaging approximately 50 minutes post administration with 

reconstruction into four 5-minute acquisitions with attenuation and scatter correction. For the 18F-FDG 

brain PET, 185 MBq (5 mCi +/- 10%) 18F-FDG was to be administered intravenously followed by 30 

minutes of dynamic imaging approximately 30 minutes post administration with reconstruction into six 5-

minute acquisitions with attenuation and scatter correction. Imaging was transferred to a central site for 

review. Quantitative data was obtained by processing each brain PET scan with a pipeline programmed 
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using the MINC toolkit [18] (Figure 1). The image acquisitions for each study were averaged, blurred to 

a common 7-mm full width half maximum (FWHM) to account for differences in camera resolution 

across sites, and the PET images were registered to the Montreal Neurological Institute template space 

using the patient MRI as an intermediate step. Masks were used to calculate the SUV ratio (SUVR) for 

brain regions-of-interest (ROIs), normalized to cerebellar grey matter for the 18F-Florbetapir PET scans 

and to the pons for the 18F-FDG PET scans. The atlas used for the ROIs included 58 individual brain 

ROIs, and a composite ROI based on the prefrontal, orbitofrontal, parietal, temporal, anterior cingulate, 

and posterior cingulate/ precuneus regions (called the Jack mask, which is often affected in AD) [19]. 

After removing the brainstem and cerebellum from the ROIs due to technical issues, each brain PET scan 

had 57 associated ROIs also called 57 feature values (56 ROIs and 1 composite ROI).  

The SUVR for the ROIs were used for supervised training of two RF scenarios programmed in 

MATLAB to identify key ROIs on 18F-Florbetapir and 18F-FDG brain PET most associated with MoCA 

score. In each case, RFs had 1,000 trees, and each tree was created using a subset of 16 cases and 20 

features. Specifically, Scenario 1: The 57 18F-Florbetapir brain PET scans were randomly divided into 40 

training and 17 testing scans. One hundred RFs (for cross-validation) of 1,000 trees, with each tree 

constructed using a randomly chosen subset of 16 scans (of the 40 training scans) and 20 features (of the 

57 features), were trained according to whether a PET scan was derived from a subject with normal or 

abnormal MoCA score (< 25 interpreted as abnormal) and the key ROIs used were recorded. Scenario 2: 

The 55 18F-FDG brain PET scans were randomly divided into 40 training and 15 testing scans, and 100 

RFs were trained according to whether a PET scan was derived from a subject with normal or abnormal 

MoCA score (< 25 interpreted as abnormal) and the key ROIs used were recorded. Two-tailed student’s t-

tests were computed between SUVRs of the tested groups for the key ROIs. The key ROIs identified by 

the RFs using the 18F-Florbetapir and 18F-FDG brain PET were then correlated against MoCA score 

(using a Pearson’s correlation coefficient) to explore associations between amyloid deposition and 

metabolism with cognition. Figure 2 illustrates how a RF works, while Figure 3 illustrates how extracted 
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imaging information using RFs may play a role in knowledge translation to help inform clinical 

interpretation.  

 

Results 

There were 57 subjects (27F, 30M; 57-91 years, mean 76.6 years, standard deviation 8.6 years) 

with MoCA scores (mean 22.7, standard deviation 4.4) and significant WMH volume (mean 34.7 cm3 and 

standard deviation 23.4 cm3) determined from MRI. Using a MoCA score cut-off of 25 (i.e. score < 25 

considered abnormal) for the 57 subjects with a 18F-Florbetapir brain PET, the MoCA score was abnormal 

in 37 (65%) and normal in 20 (35%) cases; for the 55 subjects with a 18F-FDG brain PET, the MoCA 

score was abnormal in 35 (64%) and normal in 20 (36%) cases. 

Scenario 1: Using a hundred 1,000-tree RFs and all 18F-Florbetapir PETs, the top 5 ROIs at a tree 

root node (i.e. key ROIs predictive of MoCA score based on amyloid deposition) were the: 1. Right 

posterior cingulate gyrus, 2. Right anterior cingulate gyrus, 3. Left precuneus, 4. Left posterior cingulate 

gyrus and 5. Right precuneus, as shown in Table 1 and Figure 4. There was a statistically significant 

inverse correlation of amyloid deposition with MoCA score in these ROIs, as illustrated in Figure 5. 

Scenario 2: Using a hundred 1,000-tree RFs and all 18F-FDG PETs, the top 5 ROIs at a tree root 

node (i.e. key ROIs predictive of MoCA score based on 18F-FDG uptake) were the: 1. Left fusiform 

gyrus, 2. Left precuneus, 3. Left posterior cingulate gyrus, 4. Right precuneus and 5. Left middle 

orbitofrontal gyrus, as shown in Table 2 and Figure 6. There was a trend towards a direct correlation of 

18F-FDG uptake with MoCA score, most notably in the left posterior cingulate gyrus, as illustrated in 

Figure 7. 

 

Discussion 

The clinical syndrome associated with AD, a frequent pathology in autopsies of subjects with 

cognitive impairment, is thought to be related to the progressive accumulation of amyloid plaques and tau 

tangles often co-morbid with additional proteinopathies and vasculopathies [5]. This results in 
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dysfunction of neural networks with gradual cognitive decline, evidenced by episodic memory loss, 

language, visuo-spatial and executive difficulties [20-22]. 

Although the diagnosis of cognitive impairment and dementia has long been made clinically, 

recently there has been a push for greater emphasis to be placed on the presence of imaging and/or 

cerebral spinal fluid (CSF) abnormalities. To wit, in 2016, Jack et al. proposed the “A/T/N” system in 

subjects with suspected dementia in an effort to improve clinical consistence in diagnosis., “A” is for 

amyloid positivity (on amyloid PET or CSF AE42), “T” for tau positivity (on tau PET or CSF phospho 

tau) and “N” for neurodegeneration or neuronal injury (on 18F-FDG PET, MRI or CSF total tau) [23]. 

Further, in 2018, the National Institute on Aging and Alzheimer’s Association (NIA-AAA) research 

framework suggested Alzheimer’s Dementia (AD) be defined by biomarkers such as AE deposition, 

pathologic tau and neurodegeneration, irrespective of clinical manifestations [24].  

In addition, there has been a recent proliferation in the use of machine learning (ML) algorithms 

to identify features on anatomic and molecular imaging that discriminate cognitive status and suggest 

outcome. For example, brain MRI features such as cortical thickness, among others, have been used to 

classify cognitively normal subjects from those with MCI and/or dementia [25,26]. Blazhenets et al. 

identified a cerebral metabolic pattern on 18F-FDG PET associated with conversion from MCI to AD [27]. 

While, a host of ML algorithms have been assayed, one that has shown promise, particularly with small 

datasets, is the RF. In a systematic review, Sarica et al., suggested RFs could distinguish AD from healthy 

controls with accuracy ~90% and could distinguish MCI from healthy controls with accuracy ~ 80% [28]. 

An RF is a supervised ML algorithm that uses a collection of decision trees, to sort data. For 

example, a feature value for a PET scan such as the SUVR for a specific brain ROI is used by a tree in the 

forest and a decision is made to branch left or right, based on a trained condition chosen to separate the 

data into two classes with greatest classification accuracy. To train a RF, a subset of cases from the 

complete dataset and a subset of features from the complete set of features is randomly chosen. A tree in 

the RF is then built using this random subset of cases and features for training. This is repeated for all the 
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trees in the RF. Each new case in the testing dataset is then evaluated by all the trees in the RF with the 

final decision being the classification that is most common after inspection of all of the trees. Two of the 

advantages of RFs are that: 1. they are tolerant to overfitting and 2. can pinpoint key imaging features for 

further evaluation. Or, in other words, features appearing most commonly at a root node of a tree, that are 

key for a classification outcome.  

Our group recently used a RF, to help classify 18F-Florbetapir brain PET as positive or negative 

for amyloid deposition [29]. In this paper, we use RFs not to classify scans as positive or negative for 

disease but rather to identify brain ROIs on 18F-Florbetapir and 18F-FDG brain PET associated with 

MoCA score. For the purposes of our analysis we chose a cut-off score < 25 as abnormal. Recognizing 

the ongoing debate regarding the choice of MoCA score used to classify a subject as cognitively normal 

versus cognitively impaired/ abnormal, we based our choice on the recommended cut-off for a Canadian 

sample (since all of the subjects included in this study were Canadian) [16]. On 18F-Florbetapir brain 

PET, the top 5 brain ROIs associated with MoCA score were the: right and left precuneus, right and left 

posterior cingulate gyrus, right anterior cingulate gyrus, (Table 1) with a statistically significant inverse 

correlation between the SUVR in these ROIs and MoCA score (Figure 5). Specifically, we found 

increased amyloid deposition in these ROIs correlated with decreased cognition on MoCA. This is 

consistent with results suggested by the literature [30,31]. For 18F-FDG brain PET, the top 5 brain ROIs 

associated with MoCA score were the: left and right precuneus, left posterior cingulate gyrus, left 

fusiform gyrus and left middle orbitofrontal gyrus (Table 2) with a trend towards a direct correlation 

between the SUVR in these ROIs and MoCA score (Figure 7). Notably, decreased 18F-FDG uptake in the 

left posterior cingulate gyrus correlated with decreased MoCA score, an AD signature area for PET 

hypometabolism [30]. 

In 2010, Jack et al. published their hypothetical model of dynamic biomarkers of the Alzheimer’s 

pathological cascade in which amyloid accumulates and then metabolism declines as cognitive function 

decreases [32]. 18F-Florbetapir brain PET is thought to be both sensitive and specific for distinguishing 

none to sparse from moderate to frequent amyloid plaque (87% and 95% respectively) [33]. Today, scans 
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are clinically read as positive or negative for amyloid deposition and there is a debate if information 

regarding regional amyloid deposition should be reported. Quantitation may emphasize either an overall 

amyloid burden and/or the regional nature of accumulation over time. Also, while amyloid plaque may be 

seen in cognitively normal subjects [34], interestingly, amyloid deposition may predate clinically apparent 

cognitive decline by several years. It is possible that, at least early on, evaluation of amyloid deposition in 

specific ROIs rather than overall amyloid burden may more closely parallel cognitive change, although 

further data is needed to confirm this.  

18F-FDG brain PET is thought to be both sensitive (93%) and specific (93%) for differentiating 

normal controls from subjects with AD [35]. Classically, a regional interpretation of imaging is used and 

the posterior cingulate gyrus, precuneus, temporoparietal and frontal regions are typically affected first, 

with preservation of the primary visual cortex, sensorimotor cortex and basal ganglia [27,36]. This was 

corroborated by our findings. While reduced neocortical glucose metabolism may be detected prior to 

clinical symptoms, similar to amyloid deposition, abnormalities in 18F-FDG uptake are thought to be more 

closely correlated in time [37]. 

 

Conclusions 

In a population consisting primarily of subjects with MCI/ mild AD and significant WMH 

volume, this investigation suggests RFs may pinpoint clinically relevant brain ROIs, such as the posterior 

cingulate gyrus, that correlate with abnormal MoCA score. Increasing amyloid accumulation and 

decreasing metabolism was seen in these ROIs as cognitive impairment became more pronounced. 
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Figure 1: Image-processing pipeline using the MINC toolkit: Negative 18F-FDG PET with associated 

MRI is shown in (A-E) and positive 18F-FDG PET with associated MRI is shown in (F-J). (A,F) 

Averaged and blurred PET image. (B,G) Patient MRI. (C,H) Patient PET registered to template space, 

showing SUVR on a colour scale with blue indicating lower SUVR and red indicating higher SUVR. 

(D,I) MRI template. (E,J) Example ROI mask superimposed on PET image. 

 

Figure 2: Simplified illustration of a RF being used to help identify brain ROIs on 18F-Florbetapir 

associated with MoCA score. (A) 10 training cases, each with 6 features and 2 output classes. (B) RF with 

3 trees, each trained using a randomly selected subset of 4 cases and 3 features; root nodes are the right 

posterior cingulate gyrus, left precuneus, and left posterior cingulate gyrus. 

 

Figure 3: Illustration of a machine learning algorithm being used to help clinical interpretation. 

 

Figure 4: 18F-Florbetapir PET regions-of-interest most commonly associated with abnormal MoCA 

score. 

 

Figure 5: Activity (SUVR) in regions-of-interest on 18F-Florbetapir PET, plotted versus MoCA score. 

(A) Left posterior cingulate gyrus. (B) Right posterior cingulate gyrus. (C) Left anterior cingulate gyrus. 

(D) Right anterior cingulate gyrus. (E) Left precuneus. (F) Right precuneus. 

 

Figure 6: 18F-FDG PET regions-of-interest most commonly associated with abnormal MoCA score. 

 

Figure 7: Activity (SUVR) in regions-of-interest on 18F-FDG PET, plotted versus MoCA score. (A) Left 

fusiform gyrus. (B) Right fusiform gyrus. (C) Left precuneus. (D) Right precuneus. (E) Left posterior 

cingulate gyrus. (F) Right posterior cingulate gyrus. 
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Table 1: Features commonly found at the root node in 100 RFs each with 1,000 trees trained to sort 18F-
Florbetapir PET into one of two categories: MoCA score <25 or t25, using 16 randomly selected scans 
and 20 randomly selected features (SUVR in brain ROIs) per tree. Average SUVRs and 2-tailed Student’s 
t test p-value using common variance assumption are given. Bold text indicated higher values. 
 

Region Number of 
instances at a 
root node 

Average 
SUVR 
MoCA score 
t25 

Average 
SUVR 
MoCA score 
<25 

p-value 

Right posterior cingulate  6945 1.23 1.73 3x10-4 
Right anterior cingulate gyrus  5643 1.18 1.52 6x10-4 
Left precuneus 5377 1.19 1.55 2x10-3 
Left posterior cingulate 5353 1.23 1.71 5x10-4 
Right precuneus 4356 1.17 1.52 1x10-3 
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Table 2: Features commonly found at the root node in 100 RFs each with 1,000 trees trained to sort 18F-
FDG PET into one of two categories: MoCA score <25 or t25, using 16 randomly selected scans and 20 
randomly selected features (SUVR in brain ROIs) per tree. Average SUVRs and 2-tailed Student’s t test 
p-value using common variance assumption are given. Bold text indicated higher values. 
 

Region Number of 
instances at 
a root node 

Average 
SUVR 
MoCA score 
t 25 

Average 
SUVR 
MoCA score 
< 25 

p-value 

Left fusiform gyrus 5724 1.26 1.17 0.08 
Left precuneus 5018 1.59 1.43 0.06 
Left posterior cingulate 4558 1.74 1.60 0.14 
Right precuneus 3675 1.55 1.40 0.10 
Left middle orbitofrontal gyrus 3441 1.31 1.24 0.38 
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