115 research outputs found

    Identification of a serum biomarker signature associated with metastatic prostate cancer

    Get PDF
    Purpose: Improved early diagnosis and determination of aggressiveness of prostate cancer (PC) is important to select suitable treatment options and to decrease over-treatment. The conventional marker is total prostate specific antigen (PSA) levels in blood, but lacks specificity and ability to accurately discriminate indolent from aggressive disease. Experimental design: In this study, we sought to identify a serum biomarker signature associated with metastatic PC. We measured 157 analytes in 363 serum samples from healthy subjects, patients with non-metastatic PC and patients with metastatic PC, using a recombinant antibody microarray. Results: A signature consisting of 69 proteins differentiating metastatic PC patients from healthy controls was identified. Conclusions and clinical relevance: The clinical value of this biomarker signature requires validation in larger independent patient cohorts before providing a new prospect for detection of metastatic PC

    Crossing borders to bind proteins—a new concept in protein recognition based on the conjugation of small organic molecules or short peptides to polypeptides from a designed set

    Get PDF
    A new concept for protein recognition and binding is highlighted. The conjugation of small organic molecules or short peptides to polypeptides from a designed set provides binder molecules that bind proteins with high affinities, and with selectivities that are equal to those of antibodies. The small organic molecules or peptides need to bind the protein targets but only with modest affinities and selectivities, because conjugation to the polypeptides results in molecules with dramatically improved binder performance. The polypeptides are selected from a set of only sixteen sequences designed to bind, in principle, any protein. The small number of polypeptides used to prepare high-affinity binders contrasts sharply with the huge libraries used in binder technologies based on selection or immunization. Also, unlike antibodies and engineered proteins, the polypeptides have unordered three-dimensional structures and adapt to the proteins to which they bind. Binder molecules for the C-reactive protein, human carbonic anhydrase II, acetylcholine esterase, thymidine kinase 1, phosphorylated proteins, the D-dimer, and a number of antibodies are used as examples to demonstrate that affinities are achieved that are higher than those of the small molecules or peptides by as much as four orders of magnitude. Evaluation by pull-down experiments and ELISA-based tests in human serum show selectivities to be equal to those of antibodies. Small organic molecules and peptides are readily available from pools of endogenous ligands, enzyme substrates, inhibitors or products, from screened small molecule libraries, from phage display, and from mRNA display. The technology is an alternative to established binder concepts for applications in drug development, diagnostics, medical imaging, and protein separation

    Aptamer-based multiplexed proteomic technology for biomarker discovery

    Get PDF
    Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine

    The multiplex bead array approach to identifying serum biomarkers associated with breast cancer

    Get PDF
    Introduction Breast cancer is the most common type of cancer seen in women in western countries. Thus, diagnostic modalities sensitive to early-stage breast cancer are needed. Antibody-based array platforms of a data-driven type, which are expected to facilitate more rapid and sensitive detection of novel biomarkers, have emerged as a direct, rapid means for profiling cancer-specific signatures using small samples. In line with this concept, our group constructed an antibody bead array panel for 35 analytes that were selected during the discovery step. This study was aimed at testing the performance of this 35-plex array panel in profiling signatures specific for primary non-metastatic breast cancer and validating its diagnostic utility in this independent population. Methods Thirty-five analytes were selected from more than 50 markers through screening steps using a serum bank consisting of 4,500 samples from various types of cancer. An antibody-bead array of 35 markers was constructed using the Luminex (TM) bead array platform. A study population consisting of 98 breast cancer patients and 96 normal subjects was analysed using this panel. Multivariate classification algorithms were used to find discriminating biomarkers and validated with another independent population of 90 breast cancer and 79 healthy controls. Results Serum concentrations of epidermal growth factor, soluble CD40-ligand and proapolipoprotein A1 were increased in breast cancer patients. High-molecular-weight-kininogen, apolipoprotein A1, soluble vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, vitamin-D binding protein and vitronectin were decreased in the cancer group. Multivariate classification algorithms distinguished breast cancer patients from the normal population with high accuracy (91.8% with random forest, 91.5% with support vector machine, 87.6% with linear discriminant analysis). Combinatorial markers also detected breast cancer at an early stage with greater sensitivity. Conclusions The current study demonstrated the usefulness of the antibody-bead array approach in finding signatures specific for primary non-metastatic breast cancer and illustrated the potential for early, high sensitivity detection of breast cancer. Further validation is required before array-based technology is used routinely for early detection of breast cancer.Kenny HA, 2008, J CLIN INVEST, V118, P1367, DOI 10.1172/JCI33775Shah FD, 2008, INTEGR CANCER THER, V7, P33, DOI 10.1177/1534735407313883Carlsson A, 2008, EUR J CANCER, V44, P472, DOI 10.1016/j.ejca.2007.11.025Nolen BM, 2008, BREAST CANCER RES, V10, DOI 10.1186/bcr2096Brogren H, 2008, THROMB RES, V122, P271, DOI 10.1016/j.thromres.2008.04.008Varki A, 2007, BLOOD, V110, P1723, DOI 10.1182/blood-2006-10-053736Madsen CD, 2007, J CELL BIOL, V177, P927, DOI 10.1083/jcb.200612058Levenson VV, 2007, BBA-GEN SUBJECTS, V1770, P847, DOI 10.1016/j.bbagen.2007.01.017VAZQUEZMARTIN A, 2007, EUR J CANCER, V43, P1117GARCIA M, 2007, GLOBAL CANC FACTS FIMoore LE, 2006, CANCER EPIDEM BIOMAR, V15, P1641, DOI 10.1158/1055-9965.EPI-05-0980Borrebaeck CAK, 2006, EXPERT OPIN BIOL TH, V6, P833, DOI 10.1517/14712598.6.8.833Zannis VI, 2006, J MOL MED-JMM, V84, P276, DOI 10.1007/s00109-005-0030-4Jemal A, 2006, CA-CANCER J CLIN, V56, P106Silva HC, 2006, NEOPLASMA, V53, P538Chahed K, 2005, INT J ONCOL, V27, P1425Jain KK, 2005, EXPERT OPIN PHARMACO, V6, P1463, DOI 10.1517/14656566.6.9.1463Abe O, 2005, LANCET, V365, P1687Paradis V, 2005, HEPATOLOGY, V41, P40, DOI 10.1002/hep.20505Molina R, 2005, TUMOR BIOL, V26, P281, DOI 10.1159/000089260Furberg AS, 2005, CANCER EPIDEM BIOMAR, V14, P33Benoy IH, 2004, CLIN CANCER RES, V10, P7157Song JS, 2004, BLOOD, V104, P2065, DOI 10.1182/blood-2004-02-0449Schairer C, 2004, J NATL CANCER I, V96, P1311, DOI 10.1093/jnci/djh253Hellman K, 2004, BRIT J CANCER, V91, P319, DOI 10.1038/sj.bjc.6601944Roselli M, 2004, CLIN CANCER RES, V10, P610Zhou AW, 2003, NAT STRUCT BIOL, V10, P541, DOI 10.1038/nsb943Hapke S, 2003, BIOL CHEM, V384, P1073Miller JC, 2003, PROTEOMICS, V3, P56Amirkhosravi A, 2002, BLOOD COAGUL FIBRIN, V13, P505Bonello N, 2002, HUM REPROD, V17, P2272Li JN, 2002, CLIN CHEM, V48, P1296Louhimo J, 2002, ANTICANCER RES, V22, P1759Knezevic V, 2001, PROTEOMICS, V1, P1271Di Micco P, 2001, DIGEST LIVER DIS, V33, P546Ferrigno D, 2001, EUR RESPIR J, V17, P667Webb DJ, 2001, J CELL BIOL, V152, P741Gion M, 2001, EUR J CANCER, V37, P355Schonbeck U, 2001, CELL MOL LIFE SCI, V58, P4Blackwell K, 2000, J CLIN ONCOL, V18, P600Carriero MV, 1999, CANCER RES, V59, P5307Antman K, 1999, JAMA-J AM MED ASSOC, V281, P1470Loskutoff DJ, 1999, APMIS, V107, P54Molina R, 1998, BREAST CANCER RES TR, V51, P109Bajou K, 1998, NAT MED, V4, P923Chan DW, 1997, J CLIN ONCOL, V15, P2322Chu KC, 1996, J NATL CANCER I, V88, P1571vanDalen A, 1996, ANTICANCER RES, V16, P2345Yamamoto N, 1996, CANCER RES, V56, P2827KOCH AE, 1995, NATURE, V376, P517HADDAD JG, 1995, J STEROID BIOCHEM, V53, P579FOEKENS JA, 1994, J CLIN ONCOL, V12, P1648GEARING AJH, 1993, IMMUNOL TODAY, V14, P506HUTCHENS TW, 1993, RAPID COMMUN MASS SP, V7, P576DECLERCK PJ, 1992, J BIOL CHEM, V267, P11693GABRIJELCIC D, 1992, AGENTS ACTIONS S, V38, P350BIEGLMAYER C, 1991, TUMOR BIOL, V12, P138DNISTRIAN AM, 1991, TUMOR BIOL, V12, P82VANDALEN A, 1990, TUMOR BIOL, V11, P189KARAS M, 1988, ANAL CHEM, V60, P2299, DOI 10.1021/ac00171a028LERNER WA, 1983, INT J CANCER, V31, P463WESTGARD JO, 1981, CLIN CHEM, V27, P493TROUSSEAU A, 1865, CLIN MED HOTEL DIEU, V3, P654*R PROJ, R PROJ STAT COMP1

    A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergic contact dermatitis is an inflammatory skin disease that affects a significant proportion of the population. This disease is caused by an adverse immune response towards chemical haptens, and leads to a substantial economic burden for society. Current test of sensitizing chemicals rely on animal experimentation. New legislations on the registration and use of chemicals within pharmaceutical and cosmetic industries have stimulated significant research efforts to develop alternative, human cell-based assays for the prediction of sensitization. The aim is to replace animal experiments with in vitro tests displaying a higher predictive power.</p> <p>Results</p> <p>We have developed a novel cell-based assay for the prediction of sensitizing chemicals. By analyzing the transcriptome of the human cell line MUTZ-3 after 24 h stimulation, using 20 different sensitizing chemicals, 20 non-sensitizing chemicals and vehicle controls, we have identified a biomarker signature of 200 genes with potent discriminatory ability. Using a Support Vector Machine for supervised classification, the prediction performance of the assay revealed an area under the ROC curve of 0.98. In addition, categorizing the chemicals according to the LLNA assay, this gene signature could also predict sensitizing potency. The identified markers are involved in biological pathways with immunological relevant functions, which can shed light on the process of human sensitization.</p> <p>Conclusions</p> <p>A gene signature predicting sensitization, using a human cell line in vitro, has been identified. This simple and robust cell-based assay has the potential to completely replace or drastically reduce the utilization of test systems based on experimental animals. Being based on human biology, the assay is proposed to be more accurate for predicting sensitization in humans, than the traditional animal-based tests.</p

    The Interface of Pancreatic Cancer With Diabetes, Obesity, and Inflammation: Research Gaps and Opportunities: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop.

    Get PDF
    A workshop on "The Interface of Pancreatic Cancer with Diabetes, Obesity, and Inflammation: Research Gaps and Opportunities" was held by the National Institute of Diabetes and Digestive and Kidney Diseases on October 12, 2017. The purpose of the workshop was to explore the relationship and possible mechanisms of the increased risk of pancreatic ductal adenocarcinoma (PDAC) related to diabetes, the role of altered intracellular energy metabolism in PDAC, the mechanisms and biomarkers of diabetes caused by PDAC, the mechanisms of the increased risk of PDAC associated with obesity, and the role of inflammatory events and mediators as contributing causes of the development of PDAC. Workshop faculty reviewed the state of the current knowledge in these areas and made recommendations for future research efforts. Further knowledge is needed to elucidate the basic mechanisms contributing to the role of hyperinsulinemia, hyperglycemia, adipokines, and acute and chronic inflammatory events on the development of PDAC

    Acute mountain sickness.

    Get PDF
    Acute mountain sickness (AMS) is a clinical syndrome occurring in otherwise healthy normal individuals who ascend rapidly to high altitude. Symptoms develop over a period ofa few hours or days. The usual symptoms include headache, anorexia, nausea, vomiting, lethargy, unsteadiness of gait, undue dyspnoea on moderate exertion and interrupted sleep. AMS is unrelated to physical fitness, sex or age except that young children over two years of age are unduly susceptible. One of the striking features ofAMS is the wide variation in individual susceptibility which is to some extent consistent. Some subjects never experience symptoms at any altitude while others have repeated attacks on ascending to quite modest altitudes. Rapid ascent to altitudes of 2500 to 3000m will produce symptoms in some subjects while after ascent over 23 days to 5000m most subjects will be affected, some to a marked degree. In general, the more rapid the ascent, the higher the altitude reached and the greater the physical exertion involved, the more severe AMS will be. Ifthe subjects stay at the altitude reached there is a tendency for acclimatization to occur and symptoms to remit over 1-7 days

    Proteomics of industrial fungi: trends and insights for biotechnology

    Get PDF
    Filamentous fungi are widely known for their industrial applications, namely, the production of food-processing enzymes and metabolites such as antibiotics and organic acids. In the past decade, the full genome sequencing of filamentous fungi increased the potential to predict encoded proteins enormously, namely, hydrolytic enzymes or proteins involved in the biosynthesis of metabolites of interest. The integration of genome sequence information with possible phenotypes requires, however, the knowledge of all the proteins in the cell in a system-wise manner, given by proteomics. This review summarises the progress of proteomics and its importance for the study of biotechnological processes in filamentous fungi. A major step forward in proteomics was to couple protein separation with high-resolution mass spectrometry, allowing accurate protein quantification. Despite the fact that most fungal proteomic studies have been focused on proteins from mycelial extracts, many proteins are related to processes which are compartmentalised in the fungal cell, e.g. β-lactam antibiotic production in the microbody. For the study of such processes, a targeted approach is required, e.g. by organelle proteomics. Typical workflows for sample preparation in fungal organelle proteomics are discussed, including homogenisation and sub-cellular fractionation. Finally, examples are presented of fungal organelle proteomic studies, which have enlarged the knowledge on areas of interest to biotechnology, such as protein secretion, energy production or antibiotic biosynthesis
    corecore