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Abstract

Purpose: Improved early diagnosis and determination of aggressiveness of prostate

cancer (PC) is important to select suitable treatment options and to decrease over-

treatment. The conventional marker is total prostate specific antigen (PSA) levels in

blood, but lacks specificity and ability to accurately discriminate indolent from aggres-

sive disease.

Experimental design: In this study, we sought to identify a serum biomarker signature

associated withmetastatic PC.Wemeasured 157 analytes in 363 serum samples from

healthy subjects, patients with non-metastatic PC and patients with metastatic PC,

using a recombinant antibodymicroarray.

Results: A signature consisting of 69 proteins differentiating metastatic PC patients

from healthy controls was identified.

Conclusions and clinical relevance: The clinical value of this biomarker signature

requires validation in larger independent patient cohorts before providing a new

prospect for detection of metastatic PC.

KEYWORDS

affinity proteomics, antibodymicroarrays, biomarkers, cancer, prostate cancer

Abbreviations: BE, backward elimination; HC, healthy controls; HC-1, healthy controls with

total PSA≤1 ng/mL; HC-2, healthy controls with total PSA> 1 ng/mL; IES, IMMray Evaluation

Software; mPC, metastatic prostate cancer; mpMRI, multiparametric magnetic resonance

imaging; nmPC, non-metastatic prostate cancer; PC, prostate cancer; PSA, prostate specific

antigen; RRA, robust ranking algorithm; scFv, single-chain fragment variable; SVM, support

vector machine
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1 INTRODUCTION

Prostate cancer (PC) is the fifth leading cause of cancer death among

menworldwide and the secondmost commonly diagnosed cancer, with
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an estimated number of 1.3 million new cases in 2018 [1,2]. PC is a

heterogeneous disease, exhibiting both indolent slow-growing tumors

and more aggressive forms with rapid progression. The majority of

PC patients are diagnosed with localized low or intermediate risk

disease with a 5-year survival rate of nearly 100%, but a significant

minority present with advanced or metastatic disease where the

5-year relative survival is only 30% [3,4]. Early and accurate determi-

nation of the disease state, particularly those withmicro-metastases is

crucial for selecting suitable therapeutic strategies to improve survival

outcomes [5].

In current clinical practice, diagnosis of PC is made by digital rectal

examination and measurement of total prostate specific antigen (PSA)

levels in blood to decide if further investigations are necessary, such

as imaging in the form of multiparametric magnetic resonance imaging

(mpMRI) followed by transrectal or transperineal targeted/systematic

ultrasound guided biopsies [6]. Despite the utility of PSA in trigger-

ing further tests, this marker lacks sufficient specificity as moder-

ately elevatedPSA levels appear also in non-malignant conditions, such

as benign prostate hyperplasia and prostatitis. Consequently, many

men without cancer or clinically insignificant PC undergo unnecessary

investigations including biopsies with potential side effects, including

life-threatening sepsis [7].

Intensive efforts have been made to find alternative diagnostic

methods to stratify patients and improve early detection of clini-

cally significant PC, such as PSA velocity, PSA density, proPSA iso-

forms, complexed PSA, and percentage of free PSA [8–11]. In addi-

tion, combinatorial approaches, such as prostate health index (PHI)

and the four kallikrein panel (4Kscore), have been evaluated and

shown improved accuracy at time of diagnosis and improved abil-

ity to discriminate Gleason≥7 [12,13]. Similarly, the Stockholm-3

(STHLM3) model and the later updated version, which is comprised

of clinical variables, blood biomarkers, a genomic SNP panel and an

explicit variable for the HOXB13 SNP, has displayed an improved

prediction of Gleason ≥7 [14,15]. Furthermore, practice is chang-

ing rapidly in a large number of countries particularly in Europe

whereby a pre-biopsy mpMRI is now triggered by an elevation in

serum PSA, and guides targeted biopsies of the prostate; thus, reduc-

ing the over-detection of low-risk disease, and enhancing the diag-

nosis of intermediate and high-risk PC [16,17]. However, this con-

tinues to cause controversy, as targeted biopsies alone of visible

lesions on mpMRI can miss up to 15% of important PC lesions

[18–20].

In this study, we have focused on identifying blood-based biomark-

ers associated with metastatic PC disease at time of diagnosis,

as this group of patients requires immediate intervention. We

have used a high-throughput, recombinant antibody microarray tar-

geting 157 analytes, mainly involved in immune regulation and

cancer [21–25], to identify (i) serum proteins that discriminate

patients with a metastatic prostate condition from healthy sub-

jects; (ii) key pathways, and (iii) regulators, involved in metastatic PC

disease.

Clinical Relevance

Prostate cancer (PC) is the second most commonly diag-

nosed cancer worldwide, and represents a heterogeneous

disease, displaying both an indolent and aggressive behavior.

Prognosis of PC is dependent on early and specific diagno-

sis of the disease. Prostate specific antigen (PSA) is a well-

established diagnostic biomarker used in PC, but has limited

specificity and ability to discriminate indolent from aggres-

sive disease. Consequently, there is an urgent need for addi-

tional biomarkers that can add value to current diagnostic

practices. In this study, we have shown that a number of low

and high abundant proteins are elevated in serum derived

from metastatic PC patients, compared to non-metastatic

PC patients and/or healthy control patients. Importantly,

we have identified a candidate serum biomarker signature

that discriminatesmetastatic PC fromhealthy controls.Once

validated in larger well-characterized clinical cohorts, these

results might potentially provide a novel opportunity for the

detection of metastatic PC, which requires immediate inter-

vention.

2 MATERIAL AND METHODS

2.1 Clinical samples

In this retrospective study, 380 cryopreserved serum samples from

the Oxford Biobank, consisting of serum from prostate cancer (PC)

patients andhealthy controls (HC)wereassayed, out ofwhich363 sam-

ples were finally analyzed (Table 1). Samples were collected at differ-

ent clinics in England from 2002–2014, centrifuged and serum was

stored at −80◦C. All prostate cancer samples, except one (discarded

from analysis), were collected at time of diagnosis. Healthy controls

(HC) were divided in two groups, (i) HC-1, including men with non-

elevated total PSA (≤1 ng/mL) derived from the large ProtectT trial

[26], and (ii) HC-2, including men with elevated total PSA (>1 ng/mL)

and at least two negative biopsies. All sampleswere transported on dry

ice to CREATE Health Translational Cancer Center at Lund University,

Sweden, and upon arrival immediately stored at −80◦C. Trial approval

was obtained from the UK East Midlands (formerly Trent) Multicen-

tre Research Ethics Committee (01/4/025), and informed consent was

obtained from all participants.

2.2 Biotinylation of serum samples

Sample IDs were recoded and all samples were randomized before

biotinylation. Biotinylation steps were performed on ice or at 4◦C
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TABLE 1 Clinical samples included in the data analysis

Healthy controls (HC) Prostate cancer (PC)

HC-1 HC-2 nmPC mPC

Number of samples 138 45 147 33

tPSA 0.7 (0.5–0.8) 8.1 (6.0–11.1) 6.7 (5.2–9.6) 270 (73.7–723.2)

Age 64 (62–68) 68 (63–72) 65 (62–71) 72 (64–82)

Digital rectal examination NA Normal Normal or abnormal Normal or abnormal

Total Gleason

≤6 51 (34.9) 1 (2.9)

≥7 96 (65.3) 21 (63.6)

Unknown 0 (0) 11 (32.4)

T stage

T1/T2 108 (73.5) 4 (12.1)

T3/T4 15 (10.3) 28 (82.4)

Unknown 24 (16.4) 1 (2.9)

M stage

M0 31 (21.1) 0 (0)

M1 0 (0) 33 (100)b

Unknown 116 (78.9)a 0 (0)

All values aremedian (interquartile range) or frequency (%).

HC-1, healthy controlswith total PSA≤1ng/mL;HC-2, healthy controlswith total PSA>1ng/mL;Mstage,metastasis stage;mPC,metastatic prostate cancer;

NA, not applicable; nmPC, non-metastatic prostate cancer; T stage, tumor stage; tPSA, total PSA (ng/mL).
aCases with no indication or suspicion of metastatic disease at time of diagnosis.
bIndicated cases diagnosedwithM1b.

in a Nunc™ 96-well polypropylene plate (Thermo Fisher Scientific,

Waltham, USA). Briefly, crude serum samples were centrifuged at

16,000 x g, and 10 µL cleared serum was diluted in PBS (D-PBS-

Sterile w/o Mg, Ca, GE Healthcare Life Sciences, Marlborough, USA)

after which 2.56 mM Biotin (EZ-LinkTM NHS-PEG4-Biotin, Thermo

Fisher Scientific) solution diluted in PBS (GE Healthcare Life Sci-

ences) was added, to a final biotin concentration of 1.13 mM. The

reaction was terminated after 2 h by adding 0.5 M Tris-HCl pH 8.0

(Thermo Fisher Scientific) to a final concentration of 181mM. For each

biotinylation plate, three replicates of a reference serum sample (ERM-

DA470k/IFCC) [27] were included as process control. Biotinylated

samples were aliquoted and stored at−80◦C.

2.3 Antibody production and purification

Human recombinant single-chain Fv (scFv) antibodies (n = 371, Table

S1) directed against 158 proteins, mainly involved in immune regula-

tion and cancer, were selected from in-house designed phage display

scFv libraries [28,29]. ScFvs were purified from E. coli using His Multi-

Trap FF 96well plates (GEHealthcare Life Sciences), according toman-

ufacturer’s protocol. Buffer exchange to PBS (GE Healthcare Life Sci-

ences) was performed using Zeba™ 96-well desalt spin plates (Thermo

Fisher Scientific), and thereafter 1% sodium azide (GBiosciences, Saint

Louis, USA) was added to the purified scFv in PBS to a final concen-

tration of 0.06%. The purity of the scFvs was evaluated by SDS-PAGE,

using 8%−16%Criterion™TGXStain-Free™ProteinGel (BioRad, Her-

cules, USA). The concentration was measured using a SPECTROstar

Omega microplate reader and analyzed with the included MARS soft-

ware (BMG Labtech, Ortenberg, Germany).

The specificity, affinity, and on-chip functionality of the scFvs has

been assured using stringent phage display selection protocols [28,29],

multiple clones (one to nine) per target, and amolecular design adapted

for microarray application [30]. Moreover, the specificity of several of

the antibodies has previously been validated using well-characterized

human samples and orthogonal methods including ELISA, mass spec-

trometry, Meso Scale Discovery assay, cytometric bead assay and spik-

ing and blocking experiments [25,29,31–37].

2.4 Generation of antibody microarrays

Produced scFvs (concentration range 0.025–0.3 mg/mL) were printed

(∼330 pl/drop) on black polymer MaxiSorp slides (NUNC, Roskilde,

Denmark), using a non-contact printer (SciFlexarrayer S11, Scienion,

Berlin, Germany). Each scFv was printed in triplicate. PBS and Biotin-

LC-BSA (Thermo Fisher Scientific) were included as negative and posi-

tive controls, respectively.
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2.5 Antibody microarray assay

Slides, consisting of multiple identical subarrays allowing up to seven

different samples tobeassayedonone single slide,wereprocessed6–9

days postmicroarray generation. Amaximumof 15 slideswere assayed

at the same time. All sampleswere randomizedover the different slides

and assay days. In addition, on each array slide a quality control sample,

denoted QCpool, consisting of pooled human serum from five healthy

individuals, biotinylated at one occasion, was analyzed to allow evalua-

tion of the inter-assay variability, meaning array-to array variations.

All incubation steps were performed at room temperature using a

3D rotator (PS-M3D, Progen Scientific, London, England) with recip-

rocal rotation (360◦) for 9 s and vibration (5◦) for 5 s. Briefly, slides

were mounted in NEXTERION® IC-16 (Schott, Jena, Germany) multi-

well incubation chambers, and blocked with MT-PBS (1% (w/v) non-

fat dry milk (AppliChem GmbH, Darmstadt, Germany), 1% (v/v) Tween

20 (Merck KGaA, Darmstadt, Germany) in PBS) for 1 h. Arrays were

washed four times with T-PBS (0.05% (v/v) Tween 20 in PBS) prior to

incubation with diluted (1:50 in MT-PBS) biotinylated serum samples

for 2 h. Next, slides were washed four times with T-PBS and then incu-

bated with 1 µg/mL Alexa Fluor 647-Streptavidin (Thermo Fisher Sci-

entific) for 1 h in darkness. Finally, slides were again washed four times

with T-PBS, dismounted, quickly immersed in dH2O, and dried with

compressed N2 before scanning at 635 nm using the InnoScan 710AL

withMapix software (Innopsys, Carbonne, France).

2.6 Data acquisition and pre-processing

The IMMray Evaluation Software (IES, Immunovia AB, Lund, Sweden)

was used to align and quantify spot signal intensities. In total, 14 sam-

pleswere not quantified due to poor quality images resulting fromslide

surfacedefects and/oruneven/highbackground.Additionally, one sam-

ple was removed due to other sampling time than at time of diagno-

sis. Using IES, local background was subtracted from each spot signal.

Each data-point was represented by amean spot intensity signal calcu-

lated based on three spot replicates per antibody. If the replicate coef-

ficient of variation (CV) exceeded 15% from the mean value, the mean

spot intensity was based on the two remaining replicates, which dis-

played most similar signals. At this stage, 7560 out of totally 135415

datapoints had a CV over 15%. Finally, all mean signals were trimmed,

meaning that 5% of the lower and upper extreme values were dis-

carded.

Quantified arrayswere evaluated considering spot saturation,mean

signal intensity, signal-to-noise ratio, and degree ofmissing points. Two

samples (belonging to the HC-1 subgroup) were identified as outliers

due to high degree of saturation over a large number of spots andwere

subsequently excluded. No antibodies were below the signal-to-noise

ratio cutoff, defined as mean PBS signal± 2 SD. In total, eight antibody

clones targeting BIRC2, BTK, MCP-1, MUC1, ORP-3, PSA, PTN13, and

TM-peptide had more than 5% missing values due to removal of spots

with poor quality, and were consequently discarded from the final

dataset, which consisted of 363 antibodies targeting 157different pro-

teins. Importantly, all eight targets except the TM-peptide, were still

possible to measure using remaining clone(s) (one or several) targeting

the same protein (Table S1). Remaining missing values (corresponding

to 0.06% of all data-points) were replaced by bagged tree imputation

[38]. Finally, acquired mean signal intensities were log2 transformed,

visualized using 3D principal component analysis (PCA) (Qlucore AB,

Lund, Sweden), and normalized using the Bayes algorithmComBat [39]

to adjust for batch (print-to-print) variation.

To assess the inter-assay variability, a total number of 173 QCpool

samples were assayed. Of those, 37 samples were not quantified due

to poor quality images resulting from slide surface defects and/or

uneven/high background. The remaining 136 QCpool samples were

quantified and used for calculation of the inter-assay CV. Briefly, CV

values were first calculated per scFv for all slides within an assay

day, then a mean CV value over 363 scFvs was calculated per assay

day. The inter-assay CV was finally calculated as the average CV

over 13 assay days. Importantly, the inter-assay CV was assessed

for both raw data, and processed data (bagged tree imputed [38],

log2 transformed and ComBat [39] normalized for print-to-print

variation).

Raw and processed data is available through Figshare (https://doi.

org/10.6084/m9.figshare.12370187).

2.7 Data analysis

Sample and analyte distributionwere assessed using PCA, and the per-

formance of each analyte was evaluated usingWilcoxon rank sum test.

Analytes with p-value ≤0.05 were considered as significantly differ-

ent, either elevated or reduced in levels. Also, the Benjamini-Hochberg

method was used for false discovery rate control. Moreover, for each

analysis, selected sample groups were randomly divided into training

and test set (70/30%), where the ratio of case versus control samples

within the data sets was retained, and a backward elimination (BE)

algorithm was applied using the training set, as previously described

[40].

Briefly, using BE, proteins with the lowest discriminating contribu-

tionwere eliminated, and analyte combinationswith highest predictive

power were identified. The signature length was selected based on the

starting point where the lowest classification error occurred, and was

used to build a support vector machine (SVM) classification model in

the training set, which was then frozen and tested on the correspond-

ing test set. The receiver operating characteristic (ROC) was used as

error metric for all BE procedures and the area under curve (AUC) was

used as a measure of the accuracy of performance of the signature in

the test set. Tominimize over-interpretation and to ensure robustness,

a minimum of five independent BE procedures was performed, leading

to a minimum of five signature lengths. Furthermore, each analyte in

the different signatures was scored and ranked using a robust ranking

algorithm (RRA) [41] based on the reverse order of elimination, where

number one being the last analyte to be eliminated. To identify the sig-

nature with highest predictive classification accuracy, a consensus sig-

nature was generated by, (i) combining the results from the different

https://doi.org/10.6084/m9.figshare.12370187
https://doi.org/10.6084/m9.figshare.12370187
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signatures, (ii) ranking the analytes based on a median RRA score, and

(iii) eliminating analytes with an occurrence<60%.

Finally, to identify over-represented analytes and pathways, enrich-

ment analysis (i.e., Enrichment analysis in Pathway Maps) was per-

formed using MetaCore (Thomson Reuters, New York, NY, USA). A list

consisting of all analytes targeted in the antibodymicroarray (Table S1)

was set asbackgroundandusedas reference for statistics in theenrich-

ment analysis.

3 RESULTS

3.1 Assessment and handling of technical
variation

A sample pool, QCpool, was used to analyze technical variation in

the antibody microarray. Principle component analysis (PCA) of non-

normalized (raw) log2 transformed QCpool data revealed print-to-

print variations (Figure S1A). This variation was reduced using the

Bayes algorithm ComBat [39], and confirmed by a PCA analysis of nor-

malized data (Figure S1B). In addition, assessment of the inter-assay

variation revealed ameanCVof 16% for non-normalized data, but only

2%afterComBat normalization (log2 transformeddata), indicating fur-

ther that the variation observed initially in the raw data could be han-

dled by data processing.

Moreover, signals from binders targeting unique epitopes of the

same analyte were compared with each other, and a median correla-

tion coefficient of 0.8463 (including all possible comparisons, n = 336;

interquartile range, 0.7049–0.9063) was observed. The variation is

most probably due to differences in epitope specificity, as indicated

by antibody sequence variances between clones targeting the same

analyte.

3.2 Analysis of discriminatory protein levels

In total, 363 clinical samples (Table 1) and 363 scFv, corresponding

to 157 analytes were analyzed using Wilcoxon rank sum test. We

identified 60 proteins that were elevated (p ≤ 0.05) in samples from

metastatic PC (mPC) patients compared to non-metastatic PC (nmPC)

samples (Table 2). In addition, we identified 16 proteins to be elevated

in mPC compared to samples from all healthy controls (HC). Fifteen of

those 16 were also identified (by identical antibody clone) in the 60

analytes above, indicating an mPC-associated profile. These proteins

were AMOT, Apo-A1, C5, CD40, CFAB, CYTC, DLG1, IL-6, IL-8, IL-16,

JAK3, RANTES, STAP1, TNF-alpha and VEGFA, and their levels were

all significantly higher in mPC compared to both nmPC and HC (data

not shown). When comparing nmPC with HC, two proteins, C1q and

UBC9, had significantly lower levels in nmPC (Table 2). Interestingly,

UBC9was also significantly lower in nmPC compared tomPC.

Using the recombinant antibody microarray, we did not observe

any significant difference in PSA values between the different sample

groups (HC, nmPC, mPC). However, these data demonstrated a lack of

correlation to clinically measured PSA levels (Table 1), possibly due to

dissimilarities in epitope specificities between the antibodies used in

the two different assays.

3.3 Identification of signatures for classification

To define a biomarker signature that classified mPC from healthy con-

trols with non-elevated PSA (HC-1) we utilized BE-SVM, using five dif-

ferent training and test sets to test the model stability. This approach

gave corresponding area under the curve (AUC) values in the test

sets ranging from 0.68 to 0.81 (mean 0.74) (Figure 1). This variation

depends on the limited number of samples included in the training sets,

but still the data supports the fact that a discriminatory power exists

in the different test sets classifying mPC from HC-1. Subsequently,

the results were combined into a consensus signature consisting of

69 analytes targeted by 75 antibodies (Table 3). As expected, analytes

from the consensus signature differed from those derived from the

Wilcoxon test (Table 2), since different algorithms and sample groups

(mPC vs. nmPC/HC in Wilcoxon test, and mPC vs. HC-1 in BE-SVM)

were used. However, a total number of 27 analytes, including ATP-

5B, C1 Inh, C4, C5, CCL11, CD40, CYTC, DLG2, DLG4, DPOLM, FAS,

GNAI3, HCD2, HER2, IL-4, IL-16, IL-18, ITCH, MAPK1, MAPK8, MCP-

1, NOS1, OSTP, PRDM8, PTN1, R-PTP-O and UBC9 were observed in

both analyses, and were significantly upregulated in mPC compared to

nmPC or HC, or both (Figure 2).

3.4 Pathway analysis

To elucidate which pathways that are represented by the proteins

found in the consensus signature discriminating mPC from HC-1

(Table 3), enrichment analysis usingMetaCore (Thomson Reuters) was

performed.

Among the significantly (p ≤ 0.05) enriched pathway maps two

PC associated pathways were defined, including (i) EGFR signaling in

PC, and (ii) ligand-independent activation of androgen receptor in PC

(Figure S2). Important top regulators in the identified pathway maps

involve EGFR and ERBB2 (HER2), which together with downstream

targets, promote cell proliferation and inhibition of apoptosis, support-

ing PC cell survival and growth (Figure S2).

Enrichment analysis was also performed for the analytes showing

significant differential expression between mPC and nmPC (Table 2),

and demonstrated significance considering regulation of angiogenesis

in PC (Figure S3). Importantly, several proteins including among others

TGF-beta-1, TNF-alpha, IL-1a and CCL2 (MCP-1) induce expression of

VEGFA and IL-8, which are important regulators of angiogenesis and

tumor neovascularization in PC (Figure S3).

Moreover, among the significantly enriched pathway maps, also

immune response through the three complement pathways (classical,

lectin and alternative pathway) was enhanced (data not shown), as lev-

els of complement associated proteins includingC1 Inh, C3, C4, C5 and

CFABwere higher in mPC compared to nmPC (Table 2).
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TABLE 2 Significantly (p≤ 0.05) differentially expressed analytes as derived fromWilcoxon rank sum test

mPC versus nmPC mPC versus HC nmPC versus HC

Antibody p-value
BH adj.a

p-value Antibody p-value
BH adj.a

p-value Antibody p-value
BH adj.a

p-value

AMOT (2) 2.86E-02 6.75E-02 AMOT (2) 4.50E-02 6.75E-02 C1q 4.99E-02 1.07E-01

ANM5 (2) 2.62E-02 7.85E-02 Apo-A1 (1) 2.07E-02 6.21E-02 UBC9 (3) 3.28E-02 4.92E-02

Apo-A1 (1) 4.55E-02 6.82E-02 C5 (2) 1.20E-03 1.81E-03

Apo-A4 (3) 3.14E-02 9.43E-02 CD40 (1) 4.51E-02 6.77E-02

ATP-5B (1) 1.38E-02 4.14E-02 CFAB (3) 1.52E-02 2.27E-02

C1 Inh (3) 4.73E-02 1.42E-01 CYTC (1) 1.78E-02 2.67E-02

C3 (1) 3.69E-02 1.11E-01 DLG1 (2) 4.58E-02 6.87E-02

C3 (5) 4.77E-02 1.43E-01 IL-16 (3) 3.18E-02 4.77E-02

C4 (2) 2.85E-02 8.23E-02 IL-6 (2) 4.11E-02 6.16E-02

C4 (3) 8.53E-03 2.56E-02 IL-6 (3) 3.95E-02 5.92E-02

C4 (4) 3.57E-02 1.07E-01 IL-8 (1) 1.59E-02 2.67E-02

C5 (2) 2.38E-04 7.14E-04 IL-8 (3) 1.77E-02 3.72E-02

CCL11 (1) 2.48E-02 7.45E-02 JAK3 4.82E-02 7.22E-02

CCL11 (2) 1.67E-02 5.00E-02 MCP-1 (8) 4.09E-02 1.23E-01

CD40 (1) 1.71E-02 5.13E-02 RANTES (1) 3.93E-02 7.13E-02

CFAB (1) 3.07E-02 9.21E-02 STAP1 (1) 3.36E-02 5.05E-02

CFAB (3) 8.48E-03 2.27E-02 STAP1 (2) 4.90E-02 7.35E-02

CYTC (1) 7.20E-03 2.16E-02 TNF-alpha (2) 4.82E-02 7.22E-02

CYTC (4) 3.98E-02 1.04E-01 VEGFA (3) 2.35E-02 3.53E-02

DLG1 (2) 2.80E-02 6.87E-02

DLG2 (1) 4.82E-02 1.44E-01

DLG2 (2) 3.72E-02 1.12E-01

DLG4 (1) 4.65E-02 1.40E-01

DPOLM (2) 3.66E-02 1.10E-01

FAS (2) 4.63E-02 1.39E-01

FER (2) 4.88E-02 1.46E-01

GNAI3 (2) 3.20E-02 9.61E-02

HCD2 (1) 3.56E-02 1.01E-01

HCD2 (4) 4.47E-02 1.34E-01

HER2 (2) 3.16E-02 9.47E-02

HsMAD2 (2) 3.29E-02 9.87E-02

IFN-gamma (2) 4.51E-02 1.35E-01

IL-12 (1) 2.96E-02 7.78E-02

IL-16 (3) 2.36E-02 4.77E-02

IL-18 (1) 4.06E-02 1.15E-01

IL-1a (1) 4.67E-02 1.40E-01

IL-1a (3) 2.06E-02 6.17E-02

IL-2 (1) 3.54E-02 8.09E-02

IL-4 (1) 1.10E-02 3.31E-02

IL-6 (2) 1.78E-02 5.34E-02

IL-6 (3) 2.60E-02 5.92E-02

IL-6 (5) 3.06E-02 9.17E-02

(Continues)
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TABLE 2 (Continued)

mPC versus nmPC mPC versus HC nmPC versus HC

Antibody p-value
BH adj.a

p-value Antibody p-value
BH adj.a

p-value Antibody p-value
BH adj.a

p-value

IL-8 (1) 1.78E-02 2.67E-02

IL-8 (3) 2.48E-02 3.72E-02

IL-9 (3) 4.73E-02 9.22E-02

ITCH (1) 3.61E-02 1.08E-01

JAK3 4.55E-02 7.22E-02

KCC2B (1) 3.25E-02 9.74E-02

KCC2B (2) 4.22E-02 1.09E-01

MAPK1 (2) 2.48E-02 7.45E-02

MAPK8 (1) 4.06E-02 1.14E-01

MARK2 (1) 3.20E-02 9.61E-02

MCP-1 (6)/CCL2 (6) 1.25E-02 3.75E-02

MUC1 (5) 2.93E-02 8.79E-02

MYOM2 (2) 4.49E-02 1.17E-01

NOS1 (2) 2.63E-02 7.89E-02

OSTP (1) 3.69E-02 1.11E-01

P85A (3) 3.69E-02 1.11E-01

PGAM5 (1) 4.84E-02 1.45E-01

PRDM8 (1) 3.23E-02 9.69E-02

PRDM8 (2) 3.19E-02 9.56E-02

PTK6 3.86E-02 1.16E-01

PTN1 (1) 2.65E-02 7.96E-02

RANTES (1) 4.75E-02 7.13E-02

RANTES (3) 4.43E-02 9.25E-02

R-PTP-kappa (2) 4.84E-02 1.45E-01

R-PTP-O (1) 2.12E-02 6.35E-02

STAP1 (1) 1.53E-02 4.59E-02

STAP1 (2) 1.76E-02 5.29E-02

STAT1 (2) 3.83E-02 1.15E-01

TGF-beta-1 (1) 4.75E-02 1.43E-01

TNF-alpha (2) 2.57E-02 7.22E-02

UBC9 (3) 3.16E-03 9.47E-03

UBE2C (2) 4.37E-02 1.31E-01

UCHL5 3.61E-02 1.08E-01

VEGFA (3) 1.90E-02 3.53E-02

Raw p-values were adjusted using the Benjamini-Hochberg method. For analytes targeted by multiple clones, the individual antibody clone suffix is shown

within brackets.

HC, healthy controls; mPC, metastatic prostate cancer; nmPC, non-metastatic prostate cancer.
aBH adj., Benjamini-Hochberg adjusted.

4 DISCUSSION

Identification of metastases in PC patients has a major impact on

treatment selection and overall survival outcome [42]. In spite of novel

emerging imaging techniques showing improved ability to detect clin-

ically significant PC [17] and metastatic PC (mPC) [43], there are still

limitations considering the diagnostic accuracy including the depen-

dence on an experienced radiologist interpretation [44]. As of today,
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F IGURE 1 Backward elimination and support vector machine
(BE-SVM) based classification of metastatic prostate cancer (mPC)
versus healthy controls with total PSA≤1 ng/mL (HC-1). Signature
lengths generated from five different BE iterations, and corresponding
AUC values from SVMmodel evaluation on the test sets

there is a lack of alternative non-invasive methods that could discrimi-

natemPCwith sufficient sensitivity and specificity at time of diagnosis.

In the present study we used an antibody-based microarray to

identify a consensus biomarker signature that discriminate mPC from

healthy controls with non-elevated PSA (HC-1). Due to the limited

number of samples frommetastatic patients the outcome of the analy-

sis and the biomarker signature indicated model instability. To circum-

vent and improve this and to finally identify a signature with clinical

utility, several development steps are needed. First, patient cohorts

with similar diagnosis collected from different hospitals need to be

tested to estimate the individual contribution of each biomarker to the

performance of the signature. Secondly, this will allow us to reduce

and refine the signature to minimize potential false positive analytes.

Finally, the resulting biomarker signature should be evaluated with

blinded samples in a multicenter program to be able to deliver clinical

utility.

Nevertheless, using part of our data as a training set, we employed

backward elimination and a supervised learning model (SVM) for

reduction and classification purpose, and identified a consensus

biomarker signature consisting of 69 analytes,whichdemonstrated the

possibility to discriminate mPC from HC-1. In parallel, we applied a

non-parametric statistical test (Wilcoxon rank sum test) to the entire

set of mPC and non-metastatic PC (nmPC) samples, to identify sig-

nificantly altered analytes. This analysis revealed 60 analytes as ele-

vated in mPC compared to nmPC, where 27 of the 60 analytes over-

lapped with the consensus signature. The two different bioinformatic

strategies gave, as expected, somewhat different outcome due to vari-

ations between the control groups (HC-1 in BE-SVM vs. nmPC in

Wilcoxon rank sum test), as well as in the utilized algorithms (BE-SVM

TABLE 3 Consensus signature of analytes classifying samples as
mPC or HC-1

mPC versus HC-1

Occurrence (%)

in total no. of

signatures

Median

RRAa

score

CYTC (1) 100 4

IgM (2) 100 8

C5 (2) 100 9

MCP-1 (9) 100 36

PTPRD (2) 100 45

MAPKK 2 (1)/MEK2 (1) 100 56

GLP-1R 80 10

Lewis y 80 15

HER2 (1)/ERBB2 (1) 80 19.5

MATK (3) 80 20.5

GNAI3 (2) 80 26

IL-16 (3) 80 29

OSTP (3) 80 29

HCD2 (2) 80 32.5

PRD14 (1) 80 39.5

ITCH (1) 80 41

HCD2 (3) 80 42

KSYK (1) 80 42.5

OSTP (2) 80 44.5

KKCC1 (1) 80 48

C4 (2) 80 49

OTUB2 (2) 80 49

PRD14 (2) 80 59.5

ATP-5B (2) 80 64.5

IL-18 (2) 80 66.5

SHC1 (2)/Shc (2) 80 77.5

UBC9 (1) 80 82

GLP-1 60 8

C1 Inh (4) 60 10

SOX11 60 10

PROP 60 12

HLA-DR/DP 60 15

NOS1 (1) 60 16

CCL11 (2) 60 18

GM-CSF (4) 60 20

C1 Inh (2) 60 22

KGP2 (1) 60 24

MAPK1 (3)/Erk1/2 (3) 60 26

CKIe (2) 60 27

PTN1 (3) 60 30

DLG4 (1) 60 30

GAK (3) 60 31

(Continues)



9 of 13

TABLE 3 (Continued)

mPC versus HC-1

Occurrence (%)

in total no. of

signatures

Median

RRAa

score

R-PTP-T (2) 60 32

MAPK8 (3) 60 34

EGFR 60 36

MCP-3 (1) 60 39

OTUB1 (1) 60 39

IL-4 (2) 60 41

APLF (2) 60 43

KCC4 (1) 60 44

PTPR2 (2) 60 45

PTPRD (1) 60 46

KRAS 60 48

R-PTP-O (1) 60 51

TNR14 (1) 60 54

FAS (4) 60 55

TENS4 60 55

MAPKK 6 (2) 60 55

PAR-6B (1) 60 58

CD40 (3) 60 58

IL-10 (1) 60 61

HsHec1 (2) 60 62

DLG2 (1) 60 62

IL-1ra (3) 60 69

ARHGC (1) 60 69

OTU6B (2) 60 74

PARP-1 60 75

BIRC2 (1) 60 77

PRDM8 (2) 60 78

PKB gamma (1)/AKT (1) 60 79

MCP-4 (1) 60 83

TNF-beta (4) 60 84

DPOLM (1) 60 86

MATK (1) 60 98

TNR3 (3) 60 99

The analytes in the consensus signature are based on the occurrence in five

backward elimination iterations, sortedbyhighest combined score. For ana-

lytes targeted by multiple antibody clones, the individual antibody clone

suffix is shownwithin brackets.

HC-1, healthy controls with total PSA ≤1 ng/mL; mPC, metastatic prostate

cancer.
aRRA= robust ranking algorithm.

vs.Wilcoxon rank sum test).Webelieve that this comparative approach

is crucial to circumvent any biases and limitations related to the use of

one single method, in particular in absence of an independent valida-

tion cohort. Moreover, to further understand the biological context of

the obtained results we performed enrichment analysis, which allowed

us to identify enriched pathways in our datasets. This could also elu-

cidate which of the identified proteins in the consensus biomarker

signature and among the 60 analytes elevated in mPC versus nmPC,

were enriched in PC associated pathways and are key findings with

respect to mPC. Based on enrichment analysis in pathways, as a holis-

tic approach to combine the results derived from BE-SVM and the

Wilcoxon rank sum test, we identified EGFR, ERBB2 (HER2), IL-8 and

VEGFA as potential important regulators of mPC. Noteworthy, despite

the fact that only HER2 being a common denominator between the

two bioinformatic approaches (BE-SVM and Wilcoxon rank sum test),

we believe that the biological relevance of EGFR, IL-8 and VEGFAmay

be equally important in the context of mPC, which is also supported by

previous findings reported in the literature, as discussed below.

Both EGFR and ERBB2 aremembers of the ERBB family of signaling

receptors. Recent finding shows that ERBB2 and EGFRoverexpression

on a cellular level support metastatic progression of PC to bone [45].

In addition, higher expression of EGFR has been observed in exosomes

derived from PC serum compared to healthy subjects [46], and serum

levels of ERBB2 have been correlated with presence of metastatic

prostate disease [47]. In line with these observations, we found

upregulation of ERBB2 in mPC compared to nmPC, and presence of

ERBB2 and EGFR in the consensus biomarker signature discriminating

mPC from HC-1. Of note, high serum EBBR2 and EGFR levels have

also been associated with advanced stage of breast cancer [48] and

malignant pleural mesothelioma [49], respectively, potentially indi-

cating a common role in disease progression, not necessarily limited

to PC.

We also observed IL-8 to be significantly upregulated in mPC

compared to both nmPC and HC. In consistency with our results,

a significant elevation of IL-8 has been observed in men with PC

bone metastases, compared to men with localized PC disease [50]. In

addition, recent findings demonstrate that IL-8 is associated with PC

aggressiveness and androgen receptor loss in primary and metastatic

PC disease [51]. Importantly, expression of IL-8 has also been shown to

correlate with PC tumorigenicity, metastasis and angiogenesis [52,53].

Likewise, also VEGFA plays a critical role in promoting angiogenesis

in PC, leading to enhanced formation of blood vessels and further

support of tumor growth [54], which likely contributes to tumor

spread and development of metastasis. In this context, stimulation

of VEGFA from prostate tumor cells has been demonstrated to be

specifically mediated through binding of the cytokine CCL2 to its

receptor on PC cells [54]. Importantly, also elevated plasma levels of

VEGFA have been reported in metastatic PC compared with localized

PC or healthy controls [55]. In agreement with these findings, we

observed upregulation of VEGFA and CCL2 in mPC compared to both

nmPC andHC, further emphasizing their involvement inmetastatic PC

disease.

Together, our findings suggest that EGFR, ERBB2, IL-8 and VEGFA

are potential important regulators involved in metastatic PC disease.

Also, additional analytes, including among others different cytokines

(IL-1a, IL-2, IL-4, IL-6, IL-9, IL-12, IL-16, IL-18, RANTES), complement

proteins (CFAB, C3, C4, C5) and apolipoproteins (Apo-A1, Apo-A4)

were observed to be elevated in mPC compared to nmPC. Some
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F IGURE 2 Significantly (p≤ 0.05,Wilcoxon rank sum test) elevated analytes in metastatic prostate cancer (mPC) compared to non-metastatic
prostate cancer (nmPC) and/or healthy controls (HC) overlapping (either by identical or non-identical antibody clone(s)) with the consensus
signature

of them have been related to PC aggressiveness (IL-4) [56], pro-

gressiveness (IL-6, IL-16),[57–59] invasion (RANTES) [60], metastases

(IL-8) [61,62], and transition of androgen-dependent to androgen-

independent phenotype (IL-6) [63], while others have not; thus, opens

up for further research of their association to PC.

In summary, we have identified the first biomarker signature that

discriminatesmPC at diagnosis fromHC-1. Furthermore, we also iden-

tifiedboth lowandhighabundantproteins as elevated in serumderived

from mPC compared to nmPC and/or HC. These findings indicate that

our antibody-based microarray platform can be used to retrieve infor-

mation on the systemic response of prostate cancer. To translate the

identified biomarker signature into clinical utility additional studies are

needed, as described. Furthermore, cohort sizes and inclusion of addi-

tional control samples from asymptomatic patients should be carefully

designed to obtain clinical actionable information with an acceptable

statistical power. Nevertheless, our findings presented herein repre-

sent a first step in paving the way towards a clinically useful biomarker

signature associated withmetastatic prostate cancer.
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