243 research outputs found
Geoeffectiveness and efficiency of CIR, Sheath and ICME in generation of magnetic storms
We investigate relative role of various types of solar wind streams in
generation of magnetic storms. On the basis of the OMNI data of interplanetary
measurements for the period of 1976-2000 we analyze 798 geomagnetic storms with
Dst < -50 nT and their interplanetary sources: corotating interaction regions
(CIR), interplanetary CME (ICME) including magnetic clouds (MC) and Ejecta and
compression regions Sheath before both types of ICME. For various types of
solar wind we study following relative characteristics: occurrence rate; mass,
momentum, energy and magnetic fluxes; probability of generation of magnetic
storm (geoeffectiveness) and efficiency of process of this generation. Obtained
results show that despite magnetic clouds have lower occurrence rate and lower
efficiency than CIR and Sheath they play an essential role in generation of
magnetic storms due to higher geoeffectiveness of storm generation (i.e higher
probability to contain large and long-term southward IMF Bz component).Comment: 23 pages, 4 figures, 3 tables, submitted to JGR special issue
"Response of Geospace to High-Speed Streams
Testing the necessity of transient spikes in the storm time ring current drivers
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95070/1/jgra20908.pd
Recovery phase of magnetic storms induced by different interplanetary drivers
Statistical analysis of Dst behaviour during recovery phase of magnetic
storms induced by different types of interplanetary drivers is made on the
basis of OMNI data in period 1976-2000. We study storms induced by ICMEs
(including magnetic clouds (MC) and Ejecta) and both types of compressed
regions: corotating interaction regions (CIR) and Sheaths. The shortest,
moderate and longest durations of recovery phase are observed in ICME-, CIR-,
and Sheath-induced storms, respectively. Recovery phases of strong ( nT) magnetic storms are well approximated by hyperbolic functions
with constant times for all types of drivers
while for moderate ( nT) storms profile can not
be approximated by hyperbolic function with constant because
hyperbolic time increases with increasing time of recovery phase.
Relation between duration and value for storms induced by ICME and
Sheath has 2 parts: and duration correlate at small durations while
they anticorrelate at large durations.Comment: 18 pages, 4 figures, 2 tables, submitted to JGR special issue
"Response of Geospace to High-Speed Streams
Adsorption of benzene on Si(100) from first principles
Adsorption of benzene on the Si(100) surface is studied from first
principles. We find that the most stable configuration is a
tetra--bonded structure characterized by one C-C double bond and four
C-Si bonds. A similar structure, obtained by rotating the benzene molecule by
90 degrees, lies slightly higher in energy. However, rather narrow wells on the
potential energy surface characterize these adsorption configurations. A
benzene molecule impinging on the Si surface is most likely to be adsorbed in
one of three different di--bonded, metastable structures, characterized
by two C-Si bonds, and eventually converts into the lowest-energy
configurations. These results are consistent with recent experiments.Comment: 4 pages, RevTex, 2 PostScript gzipped figure
The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito anopheles gambiae
Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male–female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria
The large longitudinal spread of solar energetic particles during the January 17, 2010 solar event
We investigate multi-spacecraft observations of the January 17, 2010 solar
energetic particle event. Energetic electrons and protons have been observed
over a remarkable large longitudinal range at the two STEREO spacecraft and
SOHO suggesting a longitudinal spread of nearly 360 degrees at 1AU. The flaring
active region, which was on the backside of the Sun as seen from Earth, was
separated by more than 100 degrees in longitude from the magnetic footpoints of
each of the three spacecraft. The event is characterized by strongly delayed
energetic particle onsets with respect to the flare and only small or no
anisotropies in the intensity measurements at all three locations. The presence
of a coronal shock is evidenced by the observation of a type II radio burst
from the Earth and STEREO B. In order to describe the observations in terms of
particle transport in the interplanetary medium, including perpendicular
diffusion, a 1D model describing the propagation along a magnetic field line
(model 1) (Dr\"oge, 2003) and the 3D propagation model (model 2) by (Dr\"oge et
al., 2010) including perpendicular diffusion in the interplanetary medium have
been applied, respectively. While both models are capable of reproducing the
observations, model 1 requires injection functions at the Sun of several hours.
Model 2, which includes lateral transport in the solar wind, reveals high
values for the ratio of perpendicular to parallel diffusion. Because we do not
find evidence for unusual long injection functions at the Sun we favor a
scenario with strong perpendicular transport in the interplanetary medium as
explanation for the observations.Comment: The final publication is available at http://www.springerlink.co
Harnessing anthocyanin-rich fruit: a visible reporter for tracing virus-induced gene silencing in pepper fruit
BACKGROUND: Virus-induced gene silencing (VIGS) has become a powerful tool for post-genomic technology in plant species. This is important, especially in select plants, such as the pepper plant, that are recalcitrant to Agrobacterium-mediated transformation. Although VIGS in plants has been widely employed as a powerful tool for functional genomics, scattering phenotypic effects by uneven gene silencing has been implemented in order to overcome challenges in experiments with fruit tissues. RESULTS: We improved the VIGS system based on the tobacco rattle virus (TRV) containing the An2 MYB transcription factor, which is the genetic determinant of purple colored- or anthocyanin-rich pepper. Silencing of endogenous An2 in the anthocyanin-rich pepper with the modified TRV vector for ligation-independent cloning (LIC) lacked purple pigment in its leaves, flowers, and fruits. Infection with TRV–LIC containing a tandem construct of An2 and phytoene desaturase (PDS) resulted in a typical photobleaching event in leaves without the purple pigment, whereas silencing of PDS led to the presence of photobleached and purple-colored leaves. Cosilencing of endogenous An2 and capsaicin synthase in fruits resulted in decreased levels of capsaicin and dihydrocapsaicin as assessed by high performance liquid chromatography analysis coupled with the absence of the purple pigment in fruits. CONCLUSIONS: VIGS with tandem constructs harboring An2 as a visible reporter in anthocyanin-rich pepper plants can facilitate the application of functional genomics in the study of metabolic pathways and fruit biology
Co-ordinated regulation of flowering time, plant architecture and growth by FASCICULATE: the pepper orthologue of SELF PRUNING
Wild peppers (Capsicum spp.) are either annual or perennial in their native habitat and their shoot architecture is dictated by their sympodial growth habit. To study shoot architecture in pepper, sympodial development is described in wild type and in the classical recessive fasciculate (fa) mutation. The basic sympodial unit in wild-type pepper comprises two leaves and a single terminal flower. fasciculate plants are characterized by the formation of floral clusters separated by short internodes and miniature leaves and by early flowering. Developmental analysis of these clusters revealed shorter sympodial units and, often, precocious termination prior to sympodial leaf formation. fa was mapped to pepper chromosome 6, in a region corresponding to the tomato SELF-PRUNING (SP) locus, the homologue of TFL1 of Arabidopsis. Sequence comparison between wild-type and fa plants revealed a duplication of the second exon in the mutants' orthologue of SP, leading to the formation of a premature stop codon. Ectopic expression of FASCICULATE complemented the Arabidopsis tfl1 mutant plants and as expected, stimulated late flowering. In agreement with the major effect of FASCICULATE imposed on sympodial development, the gene transcripts were localized to the centre of sympodial shoots but could not be detected in the primary shoot. The wide range of pleiotropic effects on plant architecture mediated by a single ‘flowering’ gene, suggests that it is used to co-ordinate many developmental events, and thus may underlie some of the widespread variation in the Solanaceae shoot architecture
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
- …