9 research outputs found

    Gene expression profiling of the dorsolateral and medial orbitofrontal cortex in schizophrenia

    Get PDF
    Schizophrenia is a complex polygenic disorder of unknown etiology. Over 3,000 candidate genes associated with schizophrenia have been reported, most of which being mentioned only once. Alterations in cognitive processing - working memory, metacognition and mentalization - represent a core feature of schizophrenia, which indicates the involvement of the prefrontal cortex in the pathophysiology of this disorder. Hence we compared the gene expression in postmortem tissue from the left and right dorsolateral prefrontal cortex (DLPFC, Brodmann's area 46), and the medial part of the orbitofrontal cortex (MOFC, Brodmann's area 11/12), in six patients with schizophrenia and six control brains. Although in the past decade several studies performed transcriptome profiling in schizophrenia, this is the first study to investigate both hemispheres, providing new knowledge about possible brain asymmetry at the level of gene expression and its relation to schizophrenia. We found that in the left hemisphere, twelve genes from the DLPFC and eight genes from the MOFC were differentially expressed in patients with schizophrenia compared to controls. In the right hemisphere there was only one gene differentially expressed in the MOFC. We reproduce the involvement of previously reported genes TARDBP and HNRNPC in the pathogenesis of schizophrenia, and report seven novel genes: SART1, KAT7, C1D, NPM1, EVI2A, XGY2, and TTTY15. As the differentially expressed genes only partially overlap with previous studies that analyzed other brain regions, our findings indicate the importance of considering prefrontal cortical regions, especially those in the left hemisphere, for obtaining disease-relevant insights

    Gene expression differences in peripheral blood of Parkinson's disease patients with distinct progression profiles

    Get PDF
    The prognosis of neurodegenerative disorders is clinically challenging due to the inexistence of established biomarkers for predicting disease progression. Here, we performed an exploratory cross-sectional, case-control study aimed at determining whether gene expression differences in peripheral blood may be used as a signature of Parkinson's disease (PD) progression, thereby shedding light into potential molecular mechanisms underlying disease development. We compared transcriptional profiles in the blood from 34 PD patients who developed postural instability within ten years with those of 33 patients who did not develop postural instability within this time frame. Our study identified >200 differentially expressed genes between the two groups. The expression of several of the genes identified was previously found deregulated in animal models of PD and in PD patients. Relevant genes were selected for validation by real-time PCR in a subset of patients. The genes validated were linked to nucleic acid metabolism, mitochondria, immune response and intracellular-transport. Interestingly, we also found deregulation of these genes in a dopaminergic cell model of PD, a simple paradigm that can now be used to further dissect the role of these molecular players on dopaminergic cell loss. Altogether, our study provides preliminary evidence that expression changes in specific groups of genes and pathways, detected in peripheral blood samples, may be correlated with differential PD progression. Our exploratory study suggests that peripheral gene expression profiling may prove valuable for assisting in prediction of PD prognosis, and identifies novel culprits possibly involved in dopaminergic cell death. Given the exploratory nature of our study, further investigations using independent, well-characterized cohorts will be essential in order to validate our candidates as predictors of PD prognosis and to definitively confirm the value of gene expression analysis in aiding patient stratification and therapeutic intervention

    Association of MAPT haplotype‐tagging polymorphisms with cerebrospinal fluid biomarkers of Alzheimer's disease: A preliminary study in a Croatian cohort

    Get PDF
    Introduction: Alzheimer's disease (AD) is the world leading cause of dementia. Early detection of AD is essential for faster and more efficacious usage of therapeutics and preventive measures. Even though it is well known that one Δ4 allele of apolipoprotein E gene increases the risk for sporadic AD five times, and that two Δ4 alleles increase the risk 20 times, reliable genetic markers for AD are not yet available. Previous studies have shown that microtubule‐associated protein tau (MAPT) gene polymorphisms could be associated with increased risk for AD. Methods: The present study included 113 AD patients and 53 patients with mild cognitive impairment (MCI), as well as nine healthy controls (HC) and 53 patients with other primary causes of dementia. The study assessed whether six MAPT haplotype‐tagging polymorphisms (rs1467967, rs242557, rs3785883, rs2471738, del–In9, and rs7521) and MAPT haplotypes are associated with AD pathology, as measured by cerebrospinal fluid (CSF) AD biomarkers amyloid ÎČ1–42 (AÎČ1–42), total tau (t‐tau), tau phosphorylated at epitopes 181 (p‐tau181), 199 (p‐tau199), and 231 (p‐tau231), and visinin‐like protein 1 (VILIP‐1). Results: Significant increases in t‐tau and p‐tau CSF levels were found in patients with AG and AA MAPT rs1467967 genotype, CC MAPT rs2471738 genotype and in patients with H1H2 or H2H2 MAPT haplotype. Conclusions: These results indicate that MAPT haplotype‐tagging polymorphisms and MAPT haplotypes should be further tested as potential genetic biomarkers of AD

    Genomics Meets Glycomics—The First GWAS Study of Human N-Glycome Identifies HNF1α as a Master Regulator of Plasma Protein Fucosylation

    Get PDF
    Over half of all proteins are glycosylated, and alterations in glycosylation have been observed in numerous physiological and pathological processes. Attached glycans significantly affect protein function; but, contrary to polypeptides, they are not directly encoded by genes, and the complex processes that regulate their assembly are poorly understood. A novel approach combining genome-wide association and high-throughput glycomics analysis of 2,705 individuals in three population cohorts showed that common variants in the Hepatocyte Nuclear Factor 1α (HNF1α) and fucosyltransferase genes FUT6 and FUT8 influence N-glycan levels in human plasma. We show that HNF1α and its downstream target HNF4α regulate the expression of key fucosyltransferase and fucose biosynthesis genes. Moreover, we show that HNF1α is both necessary and sufficient to drive the expression of these genes in hepatic cells. These results reveal a new role for HNF1α as a master transcriptional regulator of multiple stages in the fucosylation process. This mechanism has implications for the regulation of immunity, embryonic development, and protein folding, as well as for our understanding of the molecular mechanisms underlying cancer, coronary heart disease, and metabolic and inflammatory disorders

    Adopting the Rumsfeld approach to understanding the action of levodopa and apomorphine in Parkinson’s disease

    No full text
    International audienceDopaminergic therapies dominate the treatment of the motor and non-motor symptoms of Parkinson’s disease (PD) but there have been no major advances in therapy in many decades. Two of the oldest drugs used appear more effective than others-levodopa and apomorphine-but the reasons for this are seldom discussed and this may be one cause for a lack of progress. This short review questions current thinking on drug action and looks at whether adopting the philosophy of ex-US Secretary of State Donald Rumsfeld reveals ’unknown’ aspects of the actions of levodopa and apomorphine that provide clues for a way forward. It appears that both levodopa and apomorphine have a more complex pharmacology than classical views would suggest. In addition, there are unexpected facets to the mechanisms through which levodopa acts that are either forgotten as ’known unknowns’ or ignored as ’unknown unknowns’. The conclusion reached is that we may not know as much as we think about drug action in PD and there is a case for looking beyond the obvious

    The influence of dopamine-beta-hydroxylase and catechol O-methyltransferase gene polymorphism on the efficacy of insulin detemir therapy in patients with type 2 diabetes mellitus

    Get PDF
    Background: Type II diabetes is an important health problem with a complex connection to obesity, leading to a broad range of cardiovascular complications. Insulin therapy often results in weight gain and does not always ensure adequate glycemic control. However, previous studies reported that insulin detemir is an efficient long-acting insulin with a weight sparing effect. The aim of this study was to determine the association of catechol O-methyltransferase (COMT) Val108/158Met and dopamine-beta-hydroxylase (DBH) 1021C/T polymorphisms with the effectiveness of insulin detemir in achieving glucose control and body weight control. Participants and methods: This 52-week observational study included 185 patients with inadequate glycemic control treated with premix insulin analogues, which were replaced with insulin aspart and insulin detemir, and 156 healthy controls. After DNA isolation from blood samples, genotyping of DBH-1021C/T polymorphism (rs1611115) and COMT Val108/158Met polymorphism (rs4680) was performed. ----- Results: Our results confirmed that insulin detemir did not lead to weight gain. The most significant finding was that A carriers (the combined AG and AA genotype) of the COMT Val108/158Met achieved significantly better hemoglobin A1c (HbA1c) values compared to patients carrying GG genotype. No association between DBH-1021C/T genotypes and weight and/or glucose control was detected in diabetes patients or in healthy control subjects. ----- Conclusions: This study showed that the presence of one or two A allele of the COMT Val108/158Met was associated with improved glycemic response, and with a better response to insulin detemir therapy in patients with type II diabetes, separating them as best candidates for detemir therapy
    corecore