245 research outputs found

    Inter simple sequence repeat (ISSR) markers as a tool for the assessment of both genetic diversity and gene pool origin in common bean (Phaseolus vulgaris L.)

    Get PDF
    In this study, we report the use of ISSR to assess genetic diversity and to determine the relationships among ten cultivars of common bean developed in Argentina and three materials from France. ISSR markers resolved two major groups corresponding to the Andean and Mesoamerican gene pools of common bean. We compared the results of previous analysis, performed with RAPD markers (Galvan et al., 2001), with the results generated by means of ISSR. It appears that ISSR are better tools than RAPDs to identify beans by gene pool of origin though they did not revealed as many differences between individuals as RAPDs.Instituto de Fisiología Vegeta

    Microwave frequency modulation to enhance Dissolution Dynamic Nuclear Polarization Dedicated to To Martial Rey, as a token of appreciation

    Get PDF
    Hyperpolarization by Dissolution Dynamic Nuclear Polarization is usually achieved by monochromatic microwave irradiation of the ESR spectrum of free radicals embedded in glasses at 1.2 K and 3.35 T. Hovav et al. (2014) have recently shown that by using frequency-modulated (rather than monochromatic) microwave irradiation one can improve DNP at 3.35 T in the temperature range 10-50 K. We show in this Letter that this is also true under Dissolution-DNP conditions at 1.2 K and 6.7 T. We demonstrate the many virtues of using frequency-modulated microwave irradiation: higher polarizations, faster build-up rates, lower radical concentrations, less paramagnetic broadening, more efficient cross-polarization, and less critical frequency adjustments. © 2014 The Authors. Published by Elsevier B.V

    The roles of endolithic fungi in bioerosion and disease in marine ecosystems. II. Potential facultatively parasitic anamorphic ascomycetes can cause disease in corals and molluscs

    Get PDF
    Anamorphic ascomycetes have been implicated as causative agents of diseases in tissues and skeletons of hard corals, in tissues of soft corals (sea fans) and in tissues and shells of molluscs. Opportunist marine fungal pathogens, such as Aspergillus sydowii, are important components of marine mycoplankton and are ubiquitous in the open oceans, intertidal zones and marine sediments. These fungi can cause infection in or at least can be associated with animals which live in these ecosystems. A. sydowii can produce toxins which inhibit photosynthesis in and the growth of coral zooxanthellae. The prevalence of many documented infections has increased in frequency and severity in recent decades with the changing impacts of physical and chemical factors, such as temperature, acidity and eutrophication. Changes in these factors are thought to cause significant loss of biodiversity in marine ecosystems on a global scale in general, and especially in coral reefs and shallow bays

    Genetic variation in the Solanaceae fruit bearing species lulo and tree tomato revealed by Conserved Ortholog (COSII) markers

    Get PDF
    The Lulo or naranjilla (Solanum quitoense Lam.) and the tree tomato or tamarillo (Solanum betaceum Cav. Sendt.) are both Andean tropical fruit species with high nutritional value and the potential for becoming premium products in local and export markets. Herein, we present a report on the genetic characterization of 62 accessions of lulos (n = 32) and tree tomatoes (n = 30) through the use of PCR-based markers developed from single-copy conserved orthologous genes (COSII) in other Solanaceae (Asterid) species. We successfully PCR amplified a set of these markers for lulos (34 out of 46 initially tested) and tree tomatoes (26 out of 41) for molecular studies. Six polymorphic COSII markers were found in lulo with a total of 47 alleles and five polymorphic markers in tree tomato with a total of 39 alleles in the two populations. Further genetic analyses indicated a high population structure (with FST > 0.90), which may be a result of low migration between populations, adaptation to various niches and the number of markers evaluated. We propose COSII markers as sound tools for molecular studies, conservation and the breeding of these two fruit species

    Transient and sustained bacterial adaptation following repeated sublethal exposure to microbicides and a novel human antimicrobial peptide

    Get PDF
    Microbicides (biocides) play an important role in the prevention and treatment of infections. While there is currently little evidence for in-use treatment failures attributable to acquired reductions in microbicide susceptibility, the susceptibility of some bacteria can be reduced by sublethal laboratory exposure to certain agents. In this investigation, a range of environmental bacterial isolates (11 genera, 18 species) were repeatedly exposed to four microbicides (cetrimide, chlorhexidine, polyhexamethylene biguanide [PHMB], and triclosan) and a cationic apolipoprotein E-derived antimicrobial peptide (apoEdpL-W) using a previously validated exposure system. Susceptibilities (MICs and minimum bactericidal concentrations [MBCs]) were determined before and after 10 passages (P10) in the presence of an antimicrobial and then after a further 10 passages without an antimicrobial to determine the stability of any adaptations. Bacteria exhibiting >4-fold increases in MBCs were further examined for alterations in biofilm-forming ability. Following microbicide exposure, ≥4-fold decreases in susceptibility (MIC or MBC) occurred for cetrimide (5/18 bacteria), apoEdpL-W (7/18), chlorhexidine (8/18), PHMB (8/18), and triclosan (11/18). Of the 34 ≥4-fold increases in the MICs, 15 were fully reversible, 13 were partially reversible, and 6 were nonreversible. Of the 26 ≥4-fold increases in the MBCs, 7 were fully reversible, 14 were partially reversible, and 5 were nonreversible. Significant decreases in biofilm formation in P10 strains occurred for apoEdpL-W (1/18 bacteria), chlorhexidine (1/18), and triclosan (2/18), while significant increases occurred for apoEdpL-W (1/18), triclosan (1/18), and chlorhexidine (2/18). These data indicate that the stability of induced changes in microbicide susceptibility varies but may be sustained for some combinations of a bacterium and a microbicide

    Coherent evolution of parahydrogen induced polarisation using laser pump, NMR probe spectroscopy : Theoretical framework and experimental observation

    Get PDF
    We recently reported a pump-probe method that uses a single laser pulse to introduce parahydrogen (p-H2) into a metal dihydride complex and then follows the time-evolution of the p-H2-derived nuclear spin states by NMR. We present here a theoretical framework to describe the oscillatory behaviour of the resultant hyperpolarised NMR signals using a product operator formalism. We consider the cases where the p-H2-derived protons form part of an AX, AXY, AXYZ or AA′XX′ spin system in the product molecule. We use this framework to predict the patterns for 2D pump-probe NMR spectra, where the indirect dimension represents the evolution during the pump-probe delay and the positions of the cross-peaks depend on the difference in chemical shift of the p-H2-derived protons and the difference in their couplings to other nuclei. The evolution of the NMR signals of the p-H2-derived protons, as well as the transfer of hyperpolarisation to other NMR-active nuclei in the product, is described. The theoretical framework is tested experimentally for a set of ruthenium dihydride complexes representing the different spin systems. Theoretical predictions and experimental results agree to within experimental error for all features of the hyperpolarised 1H and 31P pump-probe NMR spectra. Thus we establish the laser pump, NMR probe approach as a robust way to directly observe and quantitatively analyse the coherent evolution of p-H2-derived spin order over micro-to-millisecond timescales

    Effect of Training on the Reliability of Satiety Evaluation and Use of Trained Panellists to Determine the Satiety Effect of Dietary Fibre: A Randomised Controlled Trial

    Get PDF
    Background: The assessment of satiety effects on foods is commonly performed by untrained volunteers marking their perceived hunger or fullness on line scales, marked with pre-set descriptors. The lack of reproducibility of satiety measurement using this approach however results in the tool being unable to distinguish between foods that have small, but possibly important, differences in their satiety effects. An alternate approach is used in sensory evaluation; panellists can be trained in the correct use of the assessment line-scale and brought to consensus on the meanings of descriptors used for food quality attributes to improve the panel reliability. The effect of training on the reliability of a satiety panel has not previously been reported. Method: In a randomised controlled parallel intervention, the effect of training in the correct use of a satiety labelled magnitude scale (LMS) was assessed versus no-training. The test-retest precision and reliability of two hour postprandial satiety evaluation after consumption of a standard breakfast was compared. The trained panel then compared the satiety effect of two breakfast meals containing either a viscous or a non-viscous dietary fibre in a crossover trial.Results: A subgroup of the 23 panellists (n = 5) improved their test re-test precision after training. Panel satiety area under the curve, “after the training” intervention was significantly different to “before training” (p < 0.001). Reliability of the panel determined by intraclass correlation (ICC) of test and retest showed improved strength of the correlation from 0.70 pre-intervention to 0.95 post intervention. The trained “satiety expert panel” determined that a standard breakfast with 5g of viscous fibre gave significantly higher satiety than with 5g non-viscous fibre (area under curve (AUC) of 478.2, 334.4 respectively) (p ≤ 0.002). Conclusion: Training reduced between panellist variability. The improved strength of test-retest ICC as a result of the training intervention suggests that training satiety panellists can improve the discriminating power of satiety evaluation

    Antibiotic Transport in Resistant Bacteria: Synchrotron UV Fluorescence Microscopy to Determine Antibiotic Accumulation with Single Cell Resolution

    Get PDF
    A molecular definition of the mechanism conferring bacterial multidrug resistance is clinically crucial and today methods for quantitative determination of the uptake of antimicrobial agents with single cell resolution are missing. Using the naturally occurring fluorescence of antibacterial agents after deep ultraviolet (DUV) excitation, we developed a method to non-invasively monitor the quinolones uptake in single bacteria. Our approach is based on a DUV fluorescence microscope coupled to a synchrotron beamline providing tuneable excitation from 200 to 600 nm. A full spectrum was acquired at each pixel of the image, to study the DUV excited fluorescence emitted from quinolones within single bacteria. Measuring spectra allowed us to separate the antibiotic fluorescence from the autofluorescence contribution. By performing spectroscopic analysis, the quantification of the antibiotic signal was possible. To our knowledge, this is the first time that the intracellular accumulation of a clinical antibitiotic could be determined and discussed in relation with the level of drug susceptibility for a multiresistant strain. This method is especially important to follow the behavior of quinolone molecules at individual cell level, to quantify the intracellular concentration of the antibiotic and develop new strategies to combat the dissemination of MDR-bacteria. In addition, this original approach also indicates the heterogeneity of bacterial population when the same strain is under environmental stress like antibiotic attack
    corecore