8 research outputs found

    Techniques for noise suppression and robust control in spin-based quantum information processors

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, February 2013."December 2012." Cataloged from PDF version of thesis.Includes bibliographical references (p. 145-160).Processing information quantum mechanically allows the relatively efficient solution of many important problems thought to be intractable on a classical computer. A primary challenge in experimentally implementing a quantum information processor is the control and suppression of environmental noise that decoheres the quantum system and causes it to behave classically. Environmental errors may be dynamically suppressed by applying coherent control pulses to the qubits that decouple the environment. However, the pulses themselves are subject to implementation errors, which hinders the ability to robustly store a complete quantum state. This thesis details results on the use of optimal control theory, noise twirling, and logical qubit encodings to design high-fidelity control pulses and decoupling sequences that are robust to implementation errors. Results are also presented that demonstrate how high-fidelity inductive control of a quantum system may be obtained with limited resonator bandwidth, with a discussion of applications to actuator-based quantum information processors. In a multi-mode design for such a processor, which allows efficient removal of entropy, a new protocol is suggested that permits robust parallel information transfer between nodes. The results detailed in this thesis apply broadly to most implementations of quantum information processing and specifically enable a new design for a spin-based multinode quantum information processor based on single-crystal molecular monolayer electron-nuclear spin systems integrated with superconducting electronics.by Troy William Borneman.Ph.D

    Optimal Control Theory Techniques for Nitrogen Vacancy Ensembles in Single Crystal Diamond

    Full text link
    Nitrogen Vacancy Center Ensembles are excellent candidates for quantum sensors due to their vector magnetometry capabilities, deployability at room temperature and simple optical initialization and readout. This work describes the engineering and characterization methods required to control all four Principle Axis Systems (P.A.S.) of NV ensembles in a single crystal diamond without an applied static magnetic field. Circularly polarized microwaves enable arbitrary simultaneous control with spin-locking experiments and collective control using Optimal Control Theory (OCT) in a (100) diamond. These techniques may be further improved and integrated to realize high sensitivity NV-based quantum sensing devices using all four P.A.S. systems.Comment: 18 pages main text, 7 figures, 16 pages SI, 8 figures S

    Application of Optimal Control to CPMG Refocusing Pulse Design

    Full text link
    We apply optimal control theory (OCT) to the design of refocusing pulses suitable for the CPMG sequence that are robust over a wide range of B0 and B1 offsets. We also introduce a model, based on recent progress in the analysis of unitary dynamics in the field of quantum information processing (QIP), that describes the multiple refocusing dynamics of the CPMG sequence as a dephasing Pauli channel. This model provides a compact characterization of the consequences and severity of residual pulse errors. We illustrate the methods by considering a specific example of designing and analyzing broadband OCT refocusing pulses of length 10 t180 that are constrained by the maximum instantaneous pulse power. We show that with this refocusing pulse, the CPMG sequence can refocus over 98% of magnetization for resonance offsets up to 3.2 times the maximum RF amplitude, even in the presence of +/- 10% RF inhomogeneity.Comment: 23 pages, 10 figures; Revised and reformatted version with new title and significant changes to Introduction and Conclusions section

    Signal optimization in inhomogeneous fields: application of quantum optimal control theory troy

    Get PDF
    We demonstrate that pulses derived using Optimal Control Theory (OCT) techniques can be used to significantly enhance the robustness of the Carr-Purcell-Meiboom-Gill sequence (CPMG) [1,2] to inhomogeneities in the static BB0 field. By numerically inverting the Liouville - von Neumann equation, OCT pulses were derived that can be used directly in place of hard pulses in the CPMG sequence to greatly improve the bandwidth of refocusing. To retain the echo stability achieved by the Meiboom-Gill correction to the Carr-Purcell sequence, the refocusing pulses were designed to perform a unitary π-rotation as opposed to just a state inversion transfer. To illustrate this approach we present an example of optimized pulses that show an improved CPMG-like behavior with complete excitation and multiple refocusing over a bandwidth of +/- 2.6 γB1,max B with a pulse duration limited to 10 t180

    Signal optimization in inhomogeneous fields: application of quantum optimal control theory troy

    No full text
    We demonstrate that pulses derived using Optimal Control Theory (OCT) techniques can be used to significantly enhance the robustness of the Carr-Purcell-Meiboom-Gill sequence (CPMG) [1,2] to inhomogeneities in the static BB0 field. By numerically inverting the Liouville - von Neumann equation, OCT pulses were derived that can be used directly in place of hard pulses in the CPMG sequence to greatly improve the bandwidth of refocusing. To retain the echo stability achieved by the Meiboom-Gill correction to the Carr-Purcell sequence, the refocusing pulses were designed to perform a unitary π-rotation as opposed to just a state inversion transfer. To illustrate this approach we present an example of optimized pulses that show an improved CPMG-like behavior with complete excitation and multiple refocusing over a bandwidth of +/- 2.6 γB1,max B with a pulse duration limited to 10 t180
    corecore