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Abstract

Processing information quantum mechanically allows the relatively efficient solution

of many important problems thought to be intractable on a classical computer. A

primary challenge in experimentally implementing a quantum information processor

is the control and suppression of environmental noise that decoheres the quantum

system and causes it to behave classically. Environmental errors may be dynamically

suppressed by applying coherent control pulses to the qubits that decouple the envi-

ronment. However, the pulses themselves are subject to implementation errors, which

hinders the ability to robustly store a complete quantum state.

This thesis details results on the use of optimal control theory, noise twirling, and

logical qubit encodings to design high-fidelity control pulses and decoupling sequences

that are robust to implementation errors. Results are also presented that demonstrate

how high-fidelity inductive control of a quantum system may be obtained with limited

resonator bandwidth, with a discussion of applications to actuator-based quantum

information processors. In a multinode design for such a processor, which allows

efficient removal of entropy, a new protocol is suggested that permits robust parallel

information transfer between nodes.
The results detailed in this thesis apply broadly to most implementations of quan-

tum information processing and specifically enable a new design for a spin-based

multinode quantum information processor based on single-crystal molecular mono-

layer electron-nuclear spin systems integrated with superconducting electronics.

Thesis Supervisor: David G. Cory

Title: Professor
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Foreword

This dissertation is about control strategies for quantum devices in the presence

of environmental noise, specifically targeted toward achieving large-scale multinode

quantum information processing with electron and nuclear spins. The engineering of

such a device would serve as a test-bed for control methods and design for large-scale

quantum systems, with the potential for scalability and integration with other de-

vices. The structure of the dissertation is the following: Chapter 1 provides context

by detailing the basic notions of quantum information processing, quantum error cor-

rection, and quantum devices, and introduces the discussion of multinode quantum

information processing in Chapter 3. Chapter 2 reviews the background material

necessary for the treatment of open quantum systems used in Chapters 5, 6, and 7.

Chapter 3 briefly reviews spin-based quantum information processing and multinode

designs. Chapter 4 introduces a novel theoretical procedure for efficiently transferring

information between the nodes of the processor described in Chapter 3. Chapter 5

discusses the procedure for generating high-fidelity quantum gates and formalizes the

concept of strongly modulating pulses. Chapter 6 details how numerically optimized

pulses may be used to enhance the refocusing properties of a commonly used environ-

mental decoupling sequence and introduces the concept of describing pulse errors in

decoupling sequences as a Pauli channel. Chapter 7 builds on the results of Chapter 6

to show how a Pauli channel representation permits concepts from quantum informa-

tion theory to be applied to suppress pulse errors in decoupling sequences. Chapter

8 details how the control techniques introduced in the preceding chapters may be

applied to achieve high-fidelity control with high quality factor resonators. Chapter

9 summarizes all results and their implications, with a discussion of the prospects for

building a moderate-scale spin-based quantum information processor.
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Chapter 1

Introduction: Processing

Information with Quantum Devices

The idea of manipulating information within a physical system to perform a useful

computation has been around for millenia and has led in the last century to a tech-

nological revolution based on digital computing devices. The notion of computation

has been formalized as a Turing machine [203], where an infinitely long tape contain-

ing discrete symbols representing states is passed through a processing device that

reads each symbol in turn and writes a new symbol based on a simple set of rules.

Although no modern computer is built in this way, the computational power of any

computing device is polynomially related to a Turing machine. In terms of Shannon's

quantification of information in terms of the number of state configurations possible

for a physical system [181], quantum mechanical systems - whose state space grows

exponentially with the size of the physical system - offer tremendous potential for in-

formation storage and computation. The formalization of a quantum Turing machine

[13, 14, 15] provides a foundation on which to discuss the computational power of a

quantum computer [49].

The operating principle of a gate-based digital quantum computer is straightfor-

ward: information is stored in a register of quantum bits (qubits) that is operated on

by a black-box that manipulates the register state in a deterministic, time-reversable

manner. Qubits admit the fundamentally quantum properties of superposition states
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and entanglement, and the black-box evolves the qubit register state according to

the equations of quantum dynamics. It is believed that the power of a quantum in-

formation processing device is based on the ability to prepare, and maintain under

dynamical evolution, coherent superposition states and multi-body states that ex-

hibit non-classical correlated behavior (a generalization of entanglement). While this

appears to be true for pure states [101], the existence of non-classical behavior for a

thermally mixed ensemble of pure states suggests the origin of the power of quantum

devices is more subtle [121]. Nevertheless, the capability to maintain coherence and

entanglement of pure states during evolution is sufficient for quantum information

processing and serves as a good baseline for evaluating potential quantum devices.

1.1 Quantum Computing

We will use a general model for the physical implementation of quantum computation

based on an array of coupled quantum systems whose state is manipulated by electro-

magnetic radiation [128]. Early suggestions for appropriate physical systems included

nuclear spins in liquid-state nuclear magnetic resonance (NMR) systems [41, 69] or

silicon [104], quantum dots [132], and trapped ions [152, 39]. There are many chal-

lenges facing experimental implementations of quantum computing [50, 38], which

have been formally expressed as the five Di Vincenzo criteria for physically realizable

quantum computation [52]:

1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state

3. Decoherence times much longer than gate operation times

4. The ability to implement a universal set of quantum gates

5. The ability to measure individual qubits

At the base level, a physical system must be engineered and characterized to yield

a set of well defined qubits which may be controlled, initialized, and measured by some
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means. These qubits need not be isolated two-level systems, such as spin-1/2 electrons

or nuclei, but may be logically defined as a subspace of a larger energy structure [213].

Given a sufficiently detailed description of the physical system, control sequences must

be developed that generate a universal set of quantum gates in the presence of noise

[51]. A relatively small set of repeatable single-qubit and two-qubit gates may be

used to build up any quantum computation [26].

The challenge for designing gates for a particular physical system stems from

sufficiently suppressing environmental decoherence. The effect of an environment

coupled to the quantum system was raised as one of the first questions posed when

considering if experimental quantum computation was possible [129, 207, 123] and

remains as an intense area of current study [120]. In any practical implementation of

a quantum device there are many degrees of freedom which we either cannot control

or don't have sufficient knowledge of to describe in full detail. These uncontrolled

degrees of freedom comprise the environment and the combination of the qubits and

the environment is an open quantum system.

The statement that we must both isolate qubits and perform quantum gates on

them at first seems paradoxical, as manipulating the state of a qubit necessarily means

interacting with it, requiring coupling to external fields that should act as a decohering

environment. However, as will be the focus of much of this work, the applied external

fields may actually be used to remove the effects of environmental noise, provided

the environment has sufficient memory. For situations where environmental effects

may not be suppressed directly through control sequences, quantum error correction

schemes may be used to mitigate the errors induced by the environment.

1.2 Quantum Error Correction

Due to the no-cloning theorem of quantum mechanics [222], an arbitrary quantum

state to be protected against errors may not be simply copied across several qubits,

as is done in repetition codes for classical computing. Instead, a single quantum state

must be encoded in a subspace of a larger number of qubits to allow for the detection
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and correction of errors. For example, the bit-flip code stores a single quantum state,

| ) = a 10) +# 311), as a superposition state over three qubits:

I'L) = a|000) + #1111). (1.1)

This code protects against a single bit-flip error, which is represented as a Pauli X

operation, o,, being applied to the state with probability p:

I|q) - V/(1 -P p)|F) + opox | T) .(1.2)

A simple basis transformation of this code protects against a phase flip, o-, or bit-

phase-flip, or, error. Other examples of common quantum error correcting codes are

the Shor code, which uses nine physical qubits to encode a single logical qubit that

allows for the detection and correction of any arbitrary error on a single qubit [182],

and the Steane code, that requires only seven physical qubits [194]. The smallest code

for arbitrary errors on a single qubit provably uses five physical qubits, and is referred

to as the perfect code due to its optimality in qubit resources [122].

An implementation of a gate on encoded qubits is said to be fault tolerant if the

error rate for the gate is below cp2 , where c is a constant, guaranteeing that a single

error will not propagate to cause an unrecoverable error. The accuracy thresholds for

error rates required for fault tolerance may be described in the stabilizer formalism

in terms of the generators of the set of correctable errors [72]. Recent arguments

suggest that gate error rates of less than 10~ 5 [4, 195] are necessary before QEC may

be applied to reach fault tolerance. Achieving these gate error rates requires the

design of robust coherent control pulses that are insensitive to the environment.

The overarcing principle of quantum error correction is the encoding of quantum

information into subspaces of a large Hilbert space where noise does not operate,

or obeys convenient symmetries. This unifies the concepts of passive codes, such as

decoherence-free subspaces (see Section 7.4), that aim to prevent errors from occuring,

and the aforementioned active codes that aim to detect and correct errors after they

occur [112]. An example of using only a small portion of a physical Hilbert space for
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encoding of qubits is planar surface codes [111, 48]. Surface codes spatially delocalize

quantum information over a regular two-dimensional array of physical qubits, thereby

offering enhanced protection against any errors on locally acting gates. At the expense

of requiring a very large number of physical qubits to encode logical qubits, the single

gate error threshold for a surface code approaches 1% [63]. Another advantage of

surface codes is the natural mapping to qubit arrangements conveniently realized in

physical systems, particularly multi-node configurations (see Section 3.3).

1.3 Quantum Devices

It is generally thought that despite the enormous progress achieved in the time since

quantum computers were first suggested, realization of a fully scalable quantum com-

puter is still a long way off. In the meantime, the research devoted to building a

quantum computer has practical applications that are either currently viable, or will

be in the near future. Particularly, the prospect of engineering devices to perform

specialized tasks that take advantage of our ability to understand and control phys-

ical systems at the quantum level is already emerging as a reality. For example,

taking advantage of quantum coherence in a physical system leads to unprecendented

sensitivity in sensors built with nitrogen-vacancy centers in diamond [142, 161] and

neutron interferometry [165]. Quantum cryptography [58] has also been developed to

the point that several devices are commercially available. The continued development

of quantum repreaters [28] to counter photon loss in quantum communication devices

will allow larger range and further application of these devices.

Special purpose quantum processors that do not require universality or scalability

may also have a significant impact. The quintessential example is a quantum simu-

lator [60, 130], which was initially demonstrated in NMR [192]. Without providing

universal quantum computation, such a device could allow the investigation of phys-

ical phenomena too complex to be understood numerically or analytically. Another

example of a special purpose quantum processor is a module that performs only an

efficient quantum Fourier transform (QFT), which is an integral part of many quan-
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tum algorithms [100]. Such a processor could be used not only as a unit of a larger

quantum processor, but also as an efficient replacement for classical Fourier transform

modules, with broad implications for signal processing. Increasing our understanding

of the control and error suppression of open quantum system dynamics not only will

help pave the way toward a quantum computer, but will also enhance the performance

of a wide range of quantum devices currently in use and in development.
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Chapter 2

Modeling Open Quantum System

Dynamics

Designing control sequences to implement high-fidelity gates and suppress decoher-

ence in open quantum systems requires an accurate model of the system dynamics.

In this chapter we review the aspects of modeling the dynamics of open quantum

systems necessary to develop the control schemes discussed in the remainder of the

work. Much of the discussion in this chapter is contained within standard references

for the treatment of open quantum systems [27, 158, 66].

A standard description of an open quantum system is in terms of three distinct

physical spaces: the relevant qubit degrees of freedom, the immediate environment

that couples to the qubits, and the extended environment (lattice) that induces fluc-

tuations of the environment, leading to dissipation on the qubits. This model is moti-

vated by the physical situations commonly encountered in experiments; for example,

for superconducting devices the qubits would be quantized current, charge, or flux

in a superconducting material with incorporated Josephson junctions, the immediate

environment is a collection of 2-level systems coupling to the qubits, and the lattice

causes fluctuations of the 2-level systems - perhaps surface states or bond rotations

in the device materials. Another example is electron-nuclear spin systems, where the

qubits are the spin degree of freedom of electrons and nuclei, the environment is other

degrees of freedom not used as qubits, and the lattice is Raman processes that cause
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fluctuations. In the presence of a drive term, Hd, of strength wd, that operates only

on the qubits, the total system Hamiltonian may be written as:

Htot = HQ 0 E + [Q 0 HE(t) +Wd(t)Hd + aHQE, (2.1)

where HQ and HE(t) are the drift Hamiltonians for the qubits and environment, re-

spectively. The lattice is implicitly included as inducing the time-dependence of HE.

The qubit-environment interaction, HQE, operates on the joint qubit-environment

Hilbert space with a strength a defined by the operator norm of the general qubit-

environment Hamiltonian. The full system dynamics evolves according to the Liouville-

von Neumann equation,

ap(t) = -i [Ht01, p(t)], (2.2)

where we have used the common convention h = 1. Complete knowledge of the

full system Hamiltonian is often not obtainable due to the size and complexity of

the environment. Thus, practical calculations normally require reducing the effective

dynamics to operate only on the qubit subspace. The reduced dynamics may be fully

and generally described as a map, S, which operates on p as &(p) '-+ p'. Determining

the map for a given noise model depends on the nature of the noise process in question.

2.1 Representations of a Quantum Map

Several representations of 8 are commonly used, with each being convenient for certain

calculations. The standard representation is in terms of a superoperator that defines

how any valid input state in a particular basis evolves into a valid output state in the

same basis. The Pauli basis is often used, consisting of n-fold tensor products of the

usual spin-1/2 Pauli operators, where n is the number of qubits. In superoperator

form, the Liouville-von Neumann equation is written in terms of columnized density

matrices, p - obtained by stacking the columns of p on top of one another in a right
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to left fashion [81] - acted upon by a Liouvillian superoperator, L Hi 0 I - I 3 H:

a(
-p3(t) = .C(t);3(t). (2.3)at

2.1.1 X-Matrix Representation

Given a basis, {Pj}, for a D-dimensional Hilbert space, the X-matrix is defined as

S(p) = YxiPipPj, (2.4)
i~j

and may be simply derived from the superoperator representation [81, 221]. The

X-matrix is often referred to as the process matrix because it reveals the operational

form of the processes occuring during the map in the chosen basis.

2.1.2 Kraus Representation

While a general quantum process may be conveniently described by a superoperator,

representing the system as a density matrix requires the map to be completely positive

and trace-preserving (CPTP). Requiring a map to be positive and trace-preserving

ensures that valid quantum states - given by positive, Hermitean density operators

- are mapped to other valid quantum states, and that probability is conserved. De-

manding that the map be completely positive ensures that the same is true when

the map is considered as a subsystem of a larger quantum system. Any map that is

CPTP admits representation in a Kraus form [115]:

Pout = PkAkpinAt, (2.5)
k

where for every instant in time there is a probability, Pk, of the qubits undergoing

evolution under the Kraus operator, Ak, accounting for the influence of the environ-

ment. The form of the Kraus operators depends on the particular qubit-environment
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model being considered. Requiring preservation of the trace introduces the restriction

S AkA = I. (2.6)

There are an infinite number of Kraus representations for a particular map, related to

one another by a unitary transformation, but only one maximizes the linear indepen-

dence of the operators. This unique representation is determined by the eigenvectors

and eigenvalues of the Choi matrix [37].

2.1.3 Pauli Channel Representation

A channel which admits representation as a X-matrix which is diagonal in the Pauli

basis is called a Pauli channel, S,

p= p-i po-, (2.7)

where pi is the probability of the ith Pauli error occuring. We obtain Pauli channels

in this work by simple truncation of the off-diagonal elements of the X-matrix, al-

though recent work has shown how to estimate the Pauli channel representation of a

general map that most accurately reflects the errors present in the original map [134].

Pauli channels are often used in the evaluation of error propagation in large quantum

systems that do not permit full simulation. The errors are statistically sampled in a

Quantum Monte Carlo algorithm [201, 19], with the presence of only diagonal error

operators corresponding to a Pauli channel providing relative efficiency. As will be

discussed in Chapters 6 and 7, representation of control sequences as Pauli channels

allows the application of a number of concepts from quantum information theory to

be applied to correct for errors in the sequences.
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2.2 Exact Model of Reduced Dynamics

To determine the reduced dynamics on the qubits only, we may apply projection

operator techniques [27, 144] to derive a differential equation on the qubit degrees

of freedom only - the Nakajima-Zwanzig equation. To derive the equation in the

presence of a drive term we first move into an interaction frame that isolates the

effect of the qubit-environment coupling:

IQE(t) = S(t)LQES 1 (t), (2-8)

with

S(t) = Te-ifotasrL+LE(-r)+Wd(-r)Ld (2.9)

The reduced dynamics are determined by defining operators, P and Q, that act on

the total system density matrix, p, to project onto the qubit degrees of freedom and

environmental degrees of freedom, respectively. The system projection operator is

defined as

Pp := TrE(P) 0 PB, (2.10)

where PB is an arbitrary fixed state of the environment appended to the reduced

density matrix. The projection operators are idempotent, P 2 = P and Q2 = Q, sum

to the identity, P + Q = I, and are commutative, PQ = QP = 0. Upon applying

the projection operators to equation 2.3 we obtain two coupled differential equations

for the system and environment, respectively:

at Pk(t) O PI2QE(t),(t) (2.11)

-PCQE(t)-PP(t) + a-PLQE(t)QP(t),

and

8
-Q$(t) = aQIQE(t)(t)

at (2.12)
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We may solve 2.11 in terms of the solution to 2.12,

Q#(t) = g(t, to)Qy(to) + a d g(t, )Q QE (S)(S), (2.13)

where g(t 2, t1 ) contains the non-Markovian effects of the environment from time ti

to t 2 :

9(t 2 , t1 ) = Te1i? T lQE (2.14)

Upon inserting this solution into 2.11, we obtain the Nakajima-Zwanzig equation for

the reduced system dynamics:

at#P(t) =a-PLQE (t) $ (t)+

aPLQE(t)!9(t, 0 (0 (2.15)

2 dSPLQE(t)g(t,S)QIQE(t)Pf(s).
to

No approximations have been made to derive this equaion, so it provides an exact

description of the reduced system dynamics on the qubits only. This equation is

generally intractable, and so is not often used for practical calculations. The difficulty

lies in the evaluation of the memory kernel, C(t, s) = PLQE(t)g(t, s)QLQE(S), which

often requires further approximations to be made, depending on the noise process

under consideration.

2.3 Incoherent Processes

Incoherent noise has been studied extensively in NMR settings, where it is often the

dominant noise term [218, 25, 164, 84, 131]. The noise manifests when considering a

measurement over an ensemble, either in time or space, where the effective Hamilto-

nian acting on the qubits varies over some parameter W-. The variation leads to a set

of unitary propagators, {U(0)}, with corresponding classical probability distribution,

P(W). The superoperator for incoherent noise is calculated as a convex operator sum
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over the distribution of unitary operators:

S = J d5 P()U(WJ) 9 U(0). (2.16)

2.4 Stochastic Processes

Stochastic processes cause a time-variation of the qubit Hamiltonian during an ex-

periment and are characterized by a set of multi-point correlation functions, G", with

associated correlation times, -r, that determine how an underlying distribution of

noise strengths is sampled over time. In the limiting case of stationary Gaussian

noise, which may be described by a single correlation time, the noise effects are fully

characterized by specifying the two-point correlation function, G 2 (r), or the noise

power spectral density, S(w), which is the Fourier transform of G2 (T). A general

description is to consider the qubit Hamiltonian to be subject to additive stochastic

noise:

H(t) = HQ + Hst(t). (2.17)

When dealing with a stochastic process, the dynamics are calculated as an average

over instances of the noise process. The method we choose to model stochastic noise is

based on a cumulant expansion of the stochastic Liouville equation [116]. We assume

in the following that the time-dependence of the stochastic noise is parameterized by

a fluctuating scalar, w(t), multiplying a constant Hamiltonian:

Hst(t) = w(t)Hs. (2.18)

We also assume that the fluctuation is zero-mean and the underlying distribution

generating the fluctuation is Gaussian and stationary.

As the noise is stochastic, we must take an ensemble average of the propagator

over many instances of the noise:

S(t) = KTe-i f dt'L(t') (2.19)
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where L(t) = H7 0 I - I 0 H is the Liouvillian noise operator. In order to move

the expectation value to the Liouvillian operators, we take a Dyson series of the

propagator [55]:

S(t) = R- i dt' (L(t')) + ( 2 T/ dti dt 2 (L(ti)L(t2 )) + ... (2.20)

By defining a cumulant function, K(t), we can also write the propagator as:

S(t) = eK(t) = 1 - itKi(t) + !it K 2 (t) + ... (2.21)
2!

We may now equate terms of identical order to obtain the nth order cumulants,

K1(t) = I j dt' (L(t')), (2.22)

K2(t) = T dti dt 2 (L(ti)L(t2 )) - K1 (t)2. (2.23)

We now apply the zero-mean property of w(t) to assert that Ki(t) = 0 and explicitly

apply the time-ordering operator to obtain:

2(t) = dti j dt 2 (w(ti)w(t2 )L(ti)L(t2 )). (2.24)

In the special case where the stochastic portion of the Hamiltonian commutes with

the deterministic portion the time-dependence of L(t) may be dropped and we get:

K 2(t) = 2L 2  dt i dt 2 (w(ti)w(t2 )). (2.25)
21 0 0

When the stochastic and deterministic Hamiltonians do not commute we discretize

the problem and perform the calculation in the interaction frame of the determinis-

tic Hamiltonian. Equation 2.25 may be written in terms of a two-point correlation

function

G(ti - t 2) = (w(ti)W(t 2)) , (2.26)
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to obtain

K2 (t) = 2I12 t dti j dt 2G(ti - t 2 ). (2.27)

This expression may be further simplified by using the stationary property of the

noise, applying a change of variables, and assuming that the behavior of the auto-

correlation depends only on the absolute value of the difference between ti and t2

[44]:

K 2(t) = 2 dr(t - -r)G(r). (2.28)

The effect of the noise is now completely defined by the nature of the autocorrelation

function, G(r). When G(r) corresponds to an underlying probability distribution

with a finite variance, a single parameter, the correlation time, characterizes the

memory of the noise:

Tc= 0 G(r) dr. (2.29)
G(0) 10

For general noise, however, the correlation time is often ill-defined and provides little

insight into the problem. For stationary noise, the autocorrelation is defined as the

inverse Fourier transform of the noise power spectral density:

G(r) = j S(W)eiwr dr (2.30)

Thus, for noise processes sampled from an underlying Gaussian distribution, the effect

of the noise is fully specified by either S(w) or G(r). The power spectral density may

be calculated based on a particular model of the underlying process; for example, mo-

tional modulation of a dipolar interaction [20]. However, these calculations are often

difficult or inaccurate, requiring the spectral density to be experimentally determined

[30]. For general noise processes, the underlying distribution must be fully specified

to allow the calculation of a complete set of multi-point correlation functions that

may be used to calculate higher-order cumulants.
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2.5 Markov Processes

A Markov process is one where the evolution of the system does not depend on a

history of any prior evolution; the noise process has no memory and each incremental

period of evolution is causally disconnected from every other period. Noise on a quan-

tum system that is due to a Markov process cannot be directly suppressed through

control techniques, and leads to dissipative effects that can only be suppressed by

the application of quantum error correction. The most commonly used equation of

motion governing the dynamics of qubits coupled to a Markovian environment is the

Lindblad equation:

dp = -i [He, - S (L Lp + p4 L,) + ( LapLt. (2.31)
k k

The first term represent unitary (dissipationless) evolution of the qubits under an

effective Hamiltonian, Heif, given by the raw qubit Hamiltonian, HQ, rewritten in a

chosen interaction frame. The remaining terms dictate the non-unitary (dissipative)

behavior of the qubit dynamics under the action of Lindblad jump operators, Lk,

representing the effect of the environment and derived from a model of the underlying

process or specified based on measurement.
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Chapter 3

Spin-Based Quantum Information

Processing

Physical implementations of quantum information processing based on magnetic reso-

nance of nuclear spins in the liquid state have provided a testbed for quantum control

in large Hilbert spaces [43, 42]. The Hamiltonians and noise structure of these systems

are generally well-characterized and control methods developed for NMR spectroscopy

and imaging may be directly utilized. Many demonstrations of quantum algorithms,

quantum error correction, quantum simulation, and control techniques have been

performed on liquid-state NMR systems [98], but ultimately the scalability of these

systems is limited by both the limited connectivity of the spins and an exponential

decrease in signal as more spins are added. While algorithmic cooling techniques

may be used to circumvent this signal loss [178, 173], there is still the requirement

of finding molecules large enough and with the proper structure to implement more

qubits.

Solid-state NMR systems may prove to be more appropriate due to their regular

crystal-lattice structure [9, 10]. In addition to being candidates for quantum informa-

tion processing, these systems provide a natural platform for investigating many-body

physics [36] and transport in one-dimensional spin chains, which have been suggested

as a means of transferring information between regions (or spatially separated regis-

ters) of a quantum processor [3, 168]. The addition of localized free-radical electron
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spins provides additional degrees of freedom that offer enhanced purity at convenient

temperatures and a way to efficiently remove entropy from the system [145]. Control

of a nuclear spin processor via pulsed electron spin resonance manipulation of an

electron spin offers intriguing benefits for node-based quantum computing.

3.1 Interaction Hamiltonians for Spin-Based QIP

The interactions important for magnetic resonance of electron and nuclear spins may

be categorized in terms of spin interactions with bulk fields, spin interactions be-

tween spins of the same type, and spin interactions between spins of different type.

Examples of the interactions with bulk fields are the electron and nuclear Zeeman in-

teractions. Examples of same-type spin interactions include exchange couplings and

dipole-dipole couplings. Varying-type interactions include the hyperfine coupling be-

tween electron and nuclear spins, which is a combination of a dipole-dipole coupling

and a Fermi contact exchange interaction. We describe each of these interactions

in this section. Further details of these couplings may be found in standard texts

on magnetic resonance of electrons and nuclei [1, 187, 179, 5]. In the following the

common convention h = 1 is used.

In the presence of an externally applied static magnetic field, Bo, the energy of a

nuclear spin, I, is given by the nuclear Zeeman interaction Hamiltonian:

Hnz = -750(1 - o)I, (3.1)

where -y is the gyromagnetic ratio, a constant whose value is inherent to the particular

nucleus in question, and o is the chemical shielding tensor accounting for shielding

of the external field by the electron cloud surrounding the nucleus. For an electron

spin, S, in an applied magnetic field, Bo a corresponding electron Zeeman interaction

Hamiltonian is defined as

Hez =3eBogS, (3.2)

where #e is the Bohr magneton, and g is the electron g-tensor, the combination of

42



which give the electron analogue of the nuclear gyromagnetic ratio. For a free electron

the g-tensor is isotropic with ge = 2.0023. Deviations of g from the free electron value

may be due to a spin-orbit mixing of excited and ground electronic energy levels for

bound electrons.

A Heisenberg exchange coupling occurs in systems where the orbitals of two spins

overlap, allowing the exchange of the spins between sites. The Hamiltonian for the

exchange interaction is given by

HE = S 1 JS 2 , (3-3)

where J is the exchange tensor. The same interaction occurs with nuclei, but is

mediated by hyperfine coupling to the surrounding electrons. The exchange tensor is

generally isotropic and leads to a scalar coupling of the form JS1 - S2 . However, in

some systems, such as transition metal ions, the interaction can be anisotropic [21.

The spin dipolar Hamiltonian emerges from a direct magnetic dipole-dipole inter-

action between spins

/10 2 3(1-r)S2 r Si 2
Hdd = S1 DS 2 = gg 2 e ( -) , (3.4)

4,7 r r

where puo is the permeability of free space and r is the spatial vector between the two

spins. A similar Hamiltonian exists for nuclear spins with the electron g-factor and

Bohr magneton replaced by the respective nuclear gyromagnetic ratios. The hyperfine

coupling between electron and nuclear spins originates from a dipolar coupling of this

form and an isotropic Fermi contact term

HF = 2poge3e'Yn 10o (0)12, (3.5)
3

where |'o (0) 12 is the density of the electron wavefunction at the site of the nucleus.

The general hyperfine interaction Hamiltonian is

Hhf = SAI, (3.6)
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where A is the hyperfine interaction tensor.

3.2 Electron-Nuclear Actuator-Based QIP

Systems composed of electron and nuclear spins have been studied extensively for use

in quantum information processing, including organic free radical molecules in the

solid state [143, 146, 147, 82], defect nuclear spins in silicon [155], and lattice carbon

and nitrogen spins in nitrogen-vacancy center defects in diamond [95, 96]. These pro-

posals often rely on using both electron and nuclear spins as qubits, with electron spin

operations applied using microwave frequencies and nuclear spin operations applied

using radio frequencies. The drawback of this method is that performing nuclear spin

operations directly with radio frequencies limits achievable Rabi frequencies (related

to the required gate time) to the order of kilohertz. Recently, Jonathan Hodges and

Jamie Yang demonstrated that electron spins could be used as a dedicated actua-

tor element to perform quantum operations on a nuclear spin register, coupled to

the electron via an anisotropic hyperfine interaction, with Rabi frequencies of order

megahertz [86].

To demonstrate their concept of electron-actuator based control we consider a one

electron, one nuclear (le-in) spin system in a strong external magnetic field BO = Boi

with an anisotropic hyperfine interaction coupling the two spins. We assume a drift

Hamiltonian of the form

1 1 1 1
Hd = I Oe' + 1 W + I WZ ze Un±+ wZxuean, (3.7)

2 ZZ 2 ZZ 4 ZZ 4  Z

where ,e and nz are the strengths of the electron and nuclear Zeeman interactions,

respectively, with the static field, and w,,z and wx, are isotropic and anisotropic com-

ponents of the hyperfine interaction. The electron Zeeman interaction is dominant

and defines the principle coordinate system of spin quantization. In terms of this

coordinate system, the eigenstates of the nuclear spins are given by the vector sum of

the nuclear Zeeman interaction and the spin dependent local field generated by the
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anisotropic hyperfine coupling to the electron:

1) = It ao) = sin 6i |TT) + cos6t I) ,

12) = It al) = cos Ot Itt) - sin6t Itl) (

13) = I #31) = cos0[ 11tt) - sin 4|L) ,I(3.

14) = I- #o) = sin O4 IT) + cos 04 lI) ,

where 6 and 64 determine the non-commutativity of the resulting eigenstates and

are given by:

Of = tan-1  (39
\Wzz - W 2 ( .9

01 = tan- - WZX

Due to the non-commutativity of the local fields seen by the nuclear spin when the

electron spin is in the spin-up versus spin-down state, universal control over the entire

spin system (generalizing to le-Nn systems) may be achieved by implementing only

the electron or generator and allowing free evolution under Hd [86]. This may also

be seen by noting that the transition probability between any pair of non-degenerate

states associated with the ou operation is non-zero [87]. We may thus use the nuclear

spins as a quantum processor, with the electron spin acting as an actuator element

to allow for fast quantum operations on the processor [86, 227].

3.3 Multi-Node Designs

A distributed, multi-node structure has been suggested as a convenient means of

arranging qubits in an experimentally realizable quantum computer architecture [145,

197, 204, 128, 104, 109, 97, 33]. Such a structure requires the ability to define an array

of disjoint quantum processors that may be controlled locally, with communication

between local processors provided by a coupling between nodes that may be turned

on or off in turn. One method of satisfying these requirements is to append a small
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number of qubits to each node of a two-dimensional array of nearest-neighbor coupled

actuator elements. The actuator elements provide local control of the surrounding

processor qubits and a means of transferring information between nodes via isotropic

actuator couplings [23, 17].

ni n2,

n12.:0, n 13n23
22 ,

Nodel Node 2

Figure 3-1: Schematic of a 2 x (le-3n) node structure. The nodes are taken to be identical,
with resolved anisotropic hyperfine interactions (solid red lines) between electron actuator

spins and nuclear processor spins. The local processors are initially disjoint, but may be

effectively coupled (dotted lines) by modulating an isotropic actuator exchange interaction

(solid blue double line) and moving into an appropriate microwave Hamiltonian interaction

frame. The spin labeling is ei for electron actuator spins and nij for nuclear processor spins,

where i labels the nodes and j labels the qubits.

The details of this structure will be discussed from the standpoint of a spin-based

quantum information processor. This system contains all the necessary physics and is

representative of many other modalities being considered for experimental realizations

of quantum information processing. For example, Rydberg atom excitations of neutral

atoms [94, 175], inductive coupling of superconducting qubits [135, 136], and Bloch

wave dispersion in cavity devices [54, 189] all take the form of an isotropic dipolar

coupling. Direct dipolar interactions also naturally occur in spin-based devices such

as semiconductor quantum dots [132, 160], silicon-based devices [104, 155], nitrogen-

vacancy defect centers in diamond [223], and other solid-state spin systems [11, 197,

80]. The methods discussed may be readily extended to these systems.

In our spin-based model, each node consists of a single actuator electron spin

coupled via resolved anisotropic hyperfine interactions to each of k qubits of a local

nuclear spin processor (Fig. 3-1). Control over the local processors is achieved via
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electron-only modulation [87], taking advantage of the relative strength of the hy-

perfine interaction to generate a universal set of fast quantum gates on the nuclear

spins [86], which serve as good qubits due to their relatively long coherence times

[198]. We require that the differences in the hyperfine coupling strengths within each

node are large enough for each pair of identical spins to be spectroscopically resolved,

limiting the number of qubits per node [33]. However, due to the inherent inefficiency

of designing control sequences for a large number of particles, it may be advanta-

geous to keep the size of nodes relatively small (of order 20 - 30 spins) and rely on

the ability to swap qubit states between nodes to implement large-scale quantum

algorithms. The internode coupling of actuators is given by an isotropic dipolar or

exchange interaction between electrons, with the spatial separation of the nodes taken

to be sufficiently large for any cross-node dipolar interactions of nuclear spins to be

small enough to be simply refocused.

Universal control over the entire 2x (le-kn) system is obtained by adding a term

to the Hamiltonian that spatially labels the nodes to allow for local operations. For

example, a constant 2D field gradient could be applied to add a position dependence

to the electron spin Zeeman frequency [190]. Pulses may then be designed with a

frequency selectivity corresponding to a single node [113]. In practice, the presence

of a constant field gradient during control pulses introduces additional noise to the

spin system. Alternatively, a pulsed gradient field may be applied at the start of

any computation to allow the initialization of a subset of the nuclear spins into an

eigenstate, such that they act as classical bits. The effective hyperfine field associated

with each eigenstate modifies the local field seen by the actuator, labeling the node

by the modified electron Zeeman frequency.
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Chapter 4

Efficient Information Transfer In a

Multi-Node Quantum Information

Processor

In this chapter we describe a method for coupling disjoint qubits in neighboring

processing nodes of a distributed node quantum information processor. An effective

channel for information transfer between nodes is obtained by moving the system

into an interaction frame where all pairs of cross-node qubits are effectively coupled

via an exchange interaction between actuator elements of each node. All control is

achieved via actuator-only modulation, leading to fast implementations of a universal

set of internode quantum gates. The method is expected to be nearly independent

of actuator decoherence and may be made insensitive to experimental variations of

system parameters by appropriate design of control sequences. We show, in particular,

how the induced cross-node coupling channel may be used to swap the complete

quantum states of the local processors in parallel.
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4.1 Creating An Effective Cross-Node Processor

Coupling

An effective cross-node processor coupling network is created by taking advantage of

four-body coupling terms between actuator and processor elements that appear in a

manifold of excited states unused for quantum information storage. By moving into

an appropriate interaction frame, the four-body coupling terms appear as two-body

couplings between every pair of cross-node processor qubits in a properly defined

computational manifold. While this complete cross-node coupling network allows for

a computationally universal set of operations between nodes, we present an explicit

implementation of a parallel swap of the complete quantum mechanical states of

two local quantum processors. Consideration of this representative entangling opera-

tion serves to motivate the broader applicability of the induced information transfer

channel. Additionally, since information is never explicitly stored for an appreciable

amount of time on the actuators - which are exposed to higher levels of noise than

the processor elements - we expect the channel to be nearly independent of actuator

decoherence.

The state structure of a two node system with one electron actuator spin and

one nuclear processor spin each - a 2x (le-1n) system - is shown in Fig. 4-1. The

computational basis states of the local quantum processors are defined in the ground-

state manifold of the actuators. This choice of encoding allows us to implement

gates between the disjoint processors by taking advantage of an induced cross-node

coupling in the zero-quantum (ZQ) manifold of actuator excited states not used for

information storage.

To derive the general form of the cross-node coupling we consider a 2 x (le-kn) sys-

tem. The nodes are taken to be identical with energy structure given by a dominant,

quantizing electron Zeeman interaction, He, with a strong static magnetic field ori-

ented along the laboratory 2 direction; a corresponding nuclear Zeeman interaction,

Hz; an anisotropic hyperfine interaction between electron and nuclear spins, HHj;
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Figure 4-1: The energy level structure of a 2x(le-1n) system. Quantum information is

encoded in the states 14 00), 144 01), 44 10), and 44 11) of the actuator ground-state

(Computational) manifold, where arrows indicate electron actuator spin states and binary

digits indicate nuclear processor spin states. The desired transition (bold red arrow) for

a SWAP operation is implemented by applying a selective microwave field that induces

transitions between the two manifolds (dotted lines), effectively moving the induced cross-

node processor transitions (dashed lines) in the actuator zero-quantum (ZQ) manifold to

the Computational manifold. Note that the actuator excited state manifold, Itt), is not

included as it is not involved in the internode transfer process.

and a dipolar interaction between electron spins, He:

2e-kn = Hi + Hn + Hien + He*. (4.1)

In a frame rotating at the electron Zeeman frequency, the resulting secular Hamilto-

nians are given in terms of the usual spin-! Pauli operators as [1]

H= Zw (z,."l1k + n2 k)

k

H* = Wd (2z1ze2 - Ql Ol (4.2)

H He-n 4k ( ln1k + e2an2k)'

k

where the vectors ZkA A +A k9+ Aki represent the strengths and directions of the

hyperfine coupling between the kth nuclear spin in each node and the corresponding
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actuator, Wkz is the strength of the nuclear Zeeman interaction for the kth nuclear

spin, Wd is the strength of the dipolar interaction, and Y= oI+ u, + oz2.

The full set of interactions accessible by evolution under the Hamiltonians in (4.2)

is given by the Lie algebra generated by taking Lie brackets to all orders [167, 177]. In

particular, the second-order bracket, [[HF, Hr], H takes the form of a four-body

inter-node interaction, given by an effective cross-node nuclear spin dipolar coupling,

HB~", along with flip-flop transitions of the electron spins:

[[H *, HH], H Wd] oc W (rei .e2 + oe ,e) @ Hg-". (4.3)

The resulting nuclear spin dynamics in the ZQ manifold may be decomposed into a

sum of coupling terms, Hf, that act on every pair of cross-node spins, nie and n2m

(Fig. 4-2). Each Hf7" may be written in terms of the well-known dipolar alphabet,

with oi = u., io [1]:

Atm = A A" (Un"tUZn2m) (4.4a)

5 = (AtAm" + At A") ( Unsej"2m + "O'+2') (4.4b)

+ (A'A" - At A") (4Unitm _ ni Un2m)

Oim = (AtA" - iA Am") (,it an2m + zl""a'n2m) (4.4c)

+ (AtA" - AA - iA A" + i A A) O""tU2m

kt= (AA" - AA - iA A m - iAt A") UAni Un2m (4.4d)

S=Ctm, em = E5m- (4.4e)

After application of an appropriate microwave control field, these four-body in-

teractions in the ZQ manifold appear as effective cross-node two-body couplings in

the computational manifold. To demonstrate this, we consider the implementation

of a particularly powerful operation: a parallel swap of entire local processor states

between nodes at once. For the case of a single nuclear spin per node, the relevant ZQ

transitions are |t4 01) (4t 101 and |tt 10) (ft 01|. Application of a microwave field

with matrix elements itt) (414 and |tt) (441 of strength commensurate with the ZQ
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Figure 4-2: The induced coupling network of local processor elements consists of interac-

tions between every pair of cross-node spins. For implementation of a parallel swap opera-

tion, we wish to keep interactions between identical spins (solid red lines) while refocusing

all other interactions (dotted lines).

transitions transforms both of the transitions to a swap operation in the computa-

tional manifold: 14 01) (14 101 (See Fig. 4-1).

4.2 Implementing a Parallel Swap Operation

When multiple nuclear spins are present in each node, a parallel swap operation

requires suppressing couplings between non-identical spins (f # m) while retaining

couplings between identical spins (i = m). This may be accomplished by exploit-

ing the difference in symmetry between the prefactors of the coupling operators for

identical versus non-identical spins.

Consider, as an example, a 2x (le-2n) system. The effective Hamiltonians of the

induced interactions may be written as H; + Hx, where H; = H1J + HD and Hx =

H12 + Hg1 . The effective dipolar coupling strength for Hx appears as odd order in A'

and A 2 , while each term in HD appears as even order. Thus, by inverting the state of

only the second (or first) spin in each node halfway through free evolution under the

induced Hamiltonians, we can generate a zeroth-order average Hamiltonian of only the

desired H; interactions [77]. Higher order terms in the average Hamiltonian may be
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suppressed through the use of more sophisticated pulses or by applying the evolution-

pulse-evolution cycle at a rate fast compared to WD. This symmetry argument may

be easily generalized to a larger number of nuclear spins per node by applying a

binomially expanding set of inversion pulses to properly select the desired couplings

[99].

We now consider how to isolate the desired interaction (4.3) from other elements

of the algebra. One method of suppressing the extraneous terms is to use a composite

pulse sequence to generate an effective Hamiltonian for which the desired second order

commutator is the dominant term. Concretely, recall that by the BCH expansion,

eXeY = exp(X + Y + ([X, Y] + -[X, [X, Y]] + L[Y, [Y X]] +- ). By recursively

applying this expansion, we can derive an identity that suppresses all terms below

second order:

eXe eXe- e- e e = e,['W']]+. (4.5)

By making the correspondence X = Hj and Y = He, we obtain a pulse composed

of sequential periods of only electron dipolar or hyperfine evolution, leading to the

effective propagator,

U 8 )~ eiT[[H;~*,H H,],H p]

where higher-order terms have been neglected. We may also suppress the unde-

sired terms by numerically optimizing experimentally robust microwave pulses which

achieve the desired interaction while suppressing all other interactions [61, 42, 105, 24].

4.3 Robustness to Actuator Noise

A final consideration is the sensitivity of the induced channel to actuator noise pro-

cesses. We claim that by never transferring complete qubit state information to the

actuators, we may operate in a regime where any portion of the information present

in the ZQ manifold arrives back to the computational manifold before it is corrupted.

We may quantitatively determine the robustness of the channel to actuator noise by

comparing, as a function of noise strength, the Hilbert-Schmidt inner product fidelity,
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F($ideal, Snoisy) = Tr(eaI~noisy)/d2, between d2 dimensional superoperators repre-

senting the channel in the presence of noise, Snoisy, and in the ideal noiseless case,

Sideal.

The ideal channel is generated by a Liouvillian operator, L, corresponding to

unitary evolution only. The noisy channel includes two dissipation operators, D1 and

D 2 , describing the relaxation of ei and e2 , respectively:

= itLtDltD2 (7Snoisy t) = e-dt~h (4.7)

A physically motivated model of noise is a contribution of phase and amplitude damp-

ing applied seperately to each electron, which leads to a dissipator,

11 1
D = (F1 + r 2) (E- 9 1 + 1® E_) (4.8)

2

+ io-+ & 0U+ + P2 E_ 0 E_,

where E+ = 10) (01 and E_ = |1) (11 are projection operators. The noise strength

is parameterized by F1,2, which are related to the commonly used energy, T 1, and

coherence, T 2 , relaxation times by r1 = 1/T1 and F2 = (2T - T 2) / (TT 2). A plot of

the superoperator fidelity versus noise strength is shown in Fig. 4-3. The noise has

a minimal effect on the operation of the channel for values of Tw 1 , 04 . Assuming

a modest Rabi frequency of wi = 100 MHz, actuator relaxation times of 100 ps are

required to avoid significant corruption of the information during transfer. Currently

achievable relaxation times for electron spins are well within this range [155, 83].

4.4 Discussion

By taking advantage of the additional degrees of freedom present in an actuator based

system, and manipulating the naturally occuring actuator interactions between nodes,

we were able to create an effective channel between initially disjoint local processors

that allows the parallel transfer of k-qubit states between nodes, effectively indepen-

dent of actuator decoherence. The channel takes the form of four-body cross-node
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Figure 4-3: A plot of the channel fidelity, F, as a function of noise strength, Ti = T2 , scaled
by computing - log[1 - F]. The induced channel (solid line) performs significantly better
than a serial swap operation (dotted line). Given a modest Rabi frequency, wi = 100 MHz,
the induced channel is nearly independent of actuator decoherence for electron relaxation
times above 100 ps.

interactions in the zero-quantum manifold of actuator states which, after moving into

an appropriate microwave interaction frame, appear as effective two-body couplings of

cross-node qubits in the computational manifold. The resulting complete cross-node

coupling network may be used to generate a universal set of gate operations between

nodes. We expect these techniques to be applicable to a wide-variety of quantum

devices, with minimal need for modification.
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Chapter 5

Designing Control Sequences to

Implement Robust Quantum Gates

When considering the design of a control sequence to implement a quantum gate, we

must first consider what criteria the gate should satisfy. First and foremost, the gate

should perform a desired unitary operation with high-fidelity. This implies that the

controls should be directly optimized to not only perform the target unitary robustly

over uncertainty in the qubit drift and control Hamiltonians, but also decouple the

environment over the course of the gate to reduce dissipative effects. The second

condition is that gates should be composable to ensure that any gate-dependent

errors do not accumulate and correlate over the course of a quantum computation.

Composability is normally defined over a continuous process, but may be stated for a

discrete gate set as requiring the same quantum map over all instances of the noise.

This condition is satisfied if the environment is decoupled, such that the gate action

is unitary, or if the effect of the environment appears as a Markov process on the

qubits under the action of memory-less Lindblad operators (Section 2.5). A final

condition is that any errors in the gate be well-described by a Pauli channel (Section

2.1.3). This condition is not strictly necessary, but permits efficient simulations of

the action of multiple gates and is convenient for the development of logical qubit

encodings to suppress the errors (Section 7.4). In this chapter we describe how optimal

control theory techniques may be used to optimize control pulses that perform a high-
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fidelity unitary operation in the absence of dissipation, and demonstrate how strong

modulation techniques may be used to suppress non-Markovian noise in the system.

5.1 Optimizing for a Target Unitary Operation

In the absence of dissipative processes, control sequence design simplifies to optimizing

a time-dependent Hamiltonian, H(t), such that the action of the Hamiltonian on a

general quantum state, p, yields the desired dynamics, as governed by the Liouville-

von Neumann equation,

dp- -- [p, H(t)]. (5.1)
dt h

As is common practice for dynamical calculations, we will use the convention h = 1

for the remainder of this work. The formal solution of this equation may be written

as

p(t) = U(t)p(0)Ut(t), (5.2)

where U(t) is a unitary propagator representing time evolution under the applied

Hamiltonian:

U(t) - Tei fH(s)ds, (5.3)

where T is the Dyson time-ordering operator accounting for non-commutivity of H(t)

with time. For the control sequences considered in the remainder of this work, we

are interested in finding a time-dependent Hamiltonian that accurately implements

a desired unitary operation, Ud. The notion of accuracy for unitary operations is

quantified by defining an appropriate performance functional, such as the average

gate fidelity for Hilbert space dimension D:

Tr [UUpu2se
<b(Ud, Upuise) (UIUpulse)| 2  2 . (5.4)

This performance functional has been shown to be equivalent to the average state

fidelity over a complete set of input states [61] and guarantees the desired evolution

over all possible input states when <b is close to unity.
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The set of unitary operations that may be generated depends on the form of the

accessible physical interactions present in a given system. These interactions are com-

monly separated into drift Hamiltonian terms, Hd, that are time-independent, and

control Hamiltonian terms, Hc(t), that may be varied during the course of an experi-

ment. We parameterize the control Hamiltonians into a set of constant Hamiltonians,

{Hk}, for which we may independently vary amplitudes, uk(t), to yield a total system

Hamiltonian of

H(t) = Hd+(uk(t)Hk. (5.5)
k

To avoid having to evaluate a set of time-ordered exponentials to solve (5.3), it is

common practice to discretize the time-dependence of the control amplitudes into N

intervals of length tj, such that the unitary propagator for a time T = gE tj may

be formally expressed as a product of time-independent exponentials:

N

U(T) = fUj = e-i(H+Ek kHk)t3. (5.6)
j=1

This decomposition assumes no reactance in the controls. Control in the presence of

finite reactance is discussed in Chapter 8. For the sake of simplicity, we will assume

tj = At for all j. The validity of this time-slicing method of propagator evaluation

depends on the chosen value of At, with accuracy increasing for smaller time dis-

cretization intervals. With all time-dependence effectively removed from the problem,

the control objective now simplifies to determining the set of constant amplitudes,

{ U~Ij=, which maximize the value of the average gate fidelity (5.4).

The fundamental control pulse is a simple square pulse, corresponding to setting

Uk(t) to a constant value for some pulse time, with a value of zero otherwise. For a

closed quantum system, square pulses would be all the control required to perform

quantum computation. However, for open quantum systems, more advanced pulse

techniques are required. This may be seen by considering the effect of incoherent noise

(Section 2.3) on a square pulse, such as static and control field inhomogeneities. In the

absence of inhomogeneities, the effective rotation due to a square pulse is simply about
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the axis the pulse is applied. However, in the presence of static field inhomogeneity,

the effective rotation axis is tipped toward the quantization axis leading to a rotation

that deviates from the desired one. Square pulses only effectively rotate spins that

deviate from the Larmor condition by less than the amplitude of the pulse. When

control field inhomogeneities are taken into account, the pulse performance is further

degraded [92].

5.1.1 Optimal Control Theory

It is well known that better compensation for incoherent noise processes may be

achieved by using composite pulses [124], adiabatic pulses [12, 118, 47, 67], and shaped

pulses [64]. These pulses achieve superior performance by increasing the number of

degrees of freedom of the pulse shape. As noted previously [188], the most general

pulse possible is simply a list of amplitudes and phases that do not necessarily adhere

to a simple functional form. However, optimizing a general waveform can be chal-

lenging, especially for long waveforms with a corresponding large parameter space. A

simulated annealing algorithm has been successfully applied to the design of pulses

containing many periods of amplitude and phase variation [64, 68]. Convergence was

achieved by reducing the number of degrees of freedom of the pulse shape by repre-

senting the waveform as a sum of Fourier components. Optimal control theory (OCT)

techniques based on gradient search algorithms have proven exceptionally useful to

efficiently find solutions in a large parameter space [40, 140, 171, 185]. OCT is a well-

established method to determine locally optimal solutions in a multivariate space,

subject to a cost-functional [163, 176, 102, 162]. Although these solutions correspond

to local optima, these pulses have been demonstrated to yield excellent results and

have found application in both nuclear [184, 186] and electron [86] magnetic reso-

nance.

OCT is an important tool for the design of precise control sequences and has

emerged as the method of choice for optimizing arbitrary unitary dynamics. The

relevance of OCT to magnetic resonance has been well-established [40, 140, 171, 70].

A significant advantage of using OCT techniques is the flexibility of the method.
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It allows addressing unique requirements and constraints in individual experimental

situations. This is accomplished by redefining the measures of pulse performance. In

general, one pulse will not ideally suit the needs of all applications. The versatility

of OCT lies in the ease with which various performance functionals and constraints

may be substituted into the optimization procedure without requiring a change to

the general optimization methods.

5.1.2 Implementation of Optimal Control

The efficient GRadient Ascent Pulse Engineering (GRAPE) OCT algorithm [105]

has been used extensively in spin-based implementations of quantum information

processing (see [84, 174, 156] for example applications of the GRAPE algorithm).

The relative efficiency of the GRAPE algorithm is derived from the need to only

compute the propagator corresponding to each time step, Uj, a single time at each

iteration of the optimization. The resulting single iteration propagators are then used

to calculate both the value of the performance functional and an approximation of

gradients used for pulse updating. The truncation of the gradients is valid when At

is chosen to be significantly smaller than the inverse magnitude of the system Hamil-

tonian. Approximating the gradients in this way avoids the use of finite-differencing

and other inefficient methods of computing the gradients.

In the notation of [105], and in the absence of reactance, the average gate fidelity

and corresponding gradients to first order in At are

= |(U |Upuise(T))f= (Pg|Xy) (XPj) (5.7)

and

= -2Re [(PjiAtHkXj) (Xj|Pj)], (58)

where P = U U Ud...U and Xj = Uj...U 1 are the backward and forward representa-

tions, respectively, of the total pulse propagator at the jth time interval.

The control amplitudes at optimization iteration n, uk(n), are updated according
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to

u'(n) = u'(n - 1) + c (5.9)
k ok(n - 1

where e is an adjustable scaling factor for the gradients to prevent hindering algorithm

convergence by making large deviations in the control parameters between iterations.

The algorithm proceeds as follows:

1. An initial set of control parameters is defined: {_ikf 1(0)

2. The piecewise constant propagators for each time-step are calculated: U

3. The value of the performance functional is calculated: 4

4. If D ;> 4 ) targ the algorithm exits, otherwise the gradients for each time-step and

control are calculated:
Juk

5. A line-search is used to optimize the step size, e, in the gradient direction

6. The control parameters are updated according to (5.9)

7. Loop to Step 2

A detailed derivation of the gradients, including finite reactance in the controls,

is given in Appendix A.

5.2 Strongly Modulating Quantum Gates

To suppress non-Markovian noise in the environment, we present a protocol for con-

structing quantum gates based on periods of strong modulation interspersed with

periods of free evolution. This protocol permits universal control of the quantum

system while providing robustness to environmental couplings not directly included

in numerical optimizations of gates. The use of strongly modulating pulses permits

effective decoupling of the qubits and a non-Markovian environment, such that the

qubit dynamics are composable over the gate.
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5.2.1 Waugh's Decoupling Criteria

The definitive treatment of the criteria for decoupling in magnetic resonance was

given by Waugh [217]. He considered a system of two spins-1/2, labeled as I and

S, coupled via an Ising interaction. The I spin, representing the environment, is

decoupled by an applied drive while the S spin, representing the qubit, free-induction

decay (FID) is observed. The drive is taken to be applied to the environment, but

the same principles apply for a drive applied to the qubit. The total Hamiltonian is

Htot = -wx(t)I2 - wy(t)Iy - J(t)Iz + woSz + JIzSz, (5.10)

where wx and oy are the quadrature drive strengths, 6 is an offset of the environment

Larmor resonance from the carrier frequency of the drive, wO is the S spin Larmor fre-

quency, and J is the Ising coupling strength between the two spins. This Hamiltonian

may also be written as

Htot = -We(t) - I + woSz + JIzSz, (5.11)

where we is the effective field acting on the I spin due to the drive and resonance

offset. The observable considered on the S spin is the expectation value of the Sx

operator

(S2(t)) - Tr [S2U(t)S2Uf(t)] , (5.12)
(S(0))

with

U(t) = Te-iftdrHtot(r). (5.13)

In the absence of decoupling, the qubit-environment interaction would lead to a S

spin spectrum - defined as the Fourier transform of (S(t)) - consisting of two delta

functions separated by J. Based on an average Hamiltonian argument, Waugh states

that the signature of decoupling is a scaling of the effective J-coupling strength

Jeff = AJ, (5.14)
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with complete decoupling for A = 0. To determine the criteria to obtain the complete

decoupling condition, Waugh provides a general calculation of (Sz(t)) in terms of a

piecewise constant control field. Because [Ht0 t, Sz] = 0, the dynamics on spin S admits

a direct sum representation under two Hamiltonians, H+ and H-, corresponding to

the effective qubit Hamiltonian when the I spin is in the state m, = +1/2 and

m. = -1/2, respectively. The Hamiltonians are

J
= We(t) - + -Sz, (5.15)

H+ = -We(t) - S - Sz. (5.16)
2

The resulting unitary operator over the full system Hilbert space may be written in

a block diagonal form, as U+ and U_, acting only on the S spin space. Since the

dynamics are considered only in SU(2), U+ may be written as a rotation of angle 4+

about an axis i±, which leads to an FID that may be written as

(S (0)) 1 - 4 -9 1 -0 ++#_
(S2(o)) =(1+ n+ n) cos 2 + 2(1 n+ -n-) Cos 2 (5.17)

Given a strong drive, we may say that n+ ~ n- = nd, such that the rotation axis is

completely determined by the drive and the second term becomes zero. The rotation

angles are determined by the resonance offset, 6, and coupling strength, J, as #i =

#(± J/2). If we arrange for #+ and #_ to be equal, the first term becomes unity and

the two spins experience evolution only under their respective drift Hamiltonians. In

terms of the effective coupling as a function of resonance offset, we obtain

Jeff (6) = AJ = t(r+J12) -,$(6- J/2) (5.18)
ti.

where tr is a time over which the drive is periodic. In the limit of small J we obtain

A = . (5.19)
tr 896
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Waugh's criteria for decoupling, then, is simply stated as requiring the magnitude

of the effective rotation on the spin of interest to be constant over the considered

range of offset parameters, 3. Note that this argument does not imply any specific

decoupling sequence, but allows the evaluation of all sequences based on minimizing

A. Waugh notes that the MLEV sequence [125] is a special case where pulses that

perform an inversion of z magnetization over a broad range of 6 are interspersed

with delay periods to obtain < -* 0 for all 6 over which the inversion pulse functions

properly, trivially satisfying A = 0.

5.2.2 Decoupling a Static Environment

The essence of Waugh's decoupling argument may be captured in the superoperator

formalism (Chapter 2) to extend it to a general model of multiple qubits and an

arbitrary, but known, qubit-environment coupling. Instead of computing an FID, we

will be interested in determining the requirements on the drive to make the quantum

map unitary and composable. We first consider a static environment, with total

system Hamiltonian

Htot(t, q ,n) = HQ(Jq) + Wd(t)Hd + HQE(n), (5.20)

where HQ is the qubit drift Hamiltonian with Wq parameterizing any uncertainties, Wd

is the strength of a time-dependent drive applied to only the qubits, and HQE is the

qubit-environment coupling, parameterized by ' . Dissipation arises from averaging

over multiple instances of -, and WO. For each instance we may write a unitary

propagator

U(tQq,5n) = T d , (5.21)

The quantum map, represented as a superoperator, may then be determined as an

incoherent sum over instances of On and Lq:

S(t) J d-a d- P( n, q)U(t,&qLn) 0 U(t,J9,UQn), (5.22)
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where P(- , 0q) is a normalized classical probability distribution from which the

instances are drawn. If U(t, &, n) = U(t) for all instances of the noise then the

superoperator admits a simple unitary form

S(t) = U(t) ® U(t). (5.23)

One method of ensuring that the unitary trajectories are independent of W, and 'T

is to force the drive strength at all times to be significantly larger than the modulus

of HQ and HQE. To see this, we discretize Wd(t) to be a piecewise constant set of

controls, (&.), and examine a Magnus expansion of Uk(t, W-g, -n) to determine the

average Hamiltonian, Htot,k that generates the unitary operation over the period.

The zeroth order term over a pulse period length of tk is:

wk ftk 1 1
H(t,k =W- dr Hd + THQ('q) + -HQE6n). (5.24)

tk o Wd Wd

If we now let 1/Wk -+ 0, then the effective Hamiltonian becomes

17t(k ~wJ Hd. (5.25)

Thus, during periods of strong modulation, the contribution of HQ and HQE to the

qubit dynamics is suppressed, yielding a unitary, composable map, as desired.

Assuming that the Lie algebra generated by the drive does not span the full qubit

Hilbert space, we must allow evolution under the qubit drift Hamiltonian to achieve

universal control. Having demonstrated that periods of weak modulation don't lead

to the desired map, we now make an exception for periods of free evolution, during

which Wd = 0. The effective Hamiltonian during these periods is given by

Hiqt( qUn) = HQ(&q) + HQE( 'n). (5.26)

To ensure that the map over the entire gate is composable, we must both reoptimize

the full gate to be robust to variations of Oq (as demonstrated in Chapter 6) and
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enforce that HiQE(n ) = 0 for all 0,, over an averaging time ta- The averaging

condition on HQE is equivalent to the group averaging discussed by Viola and Lloyd

for dynamical decoupling [214]. There are many sequences that have been proposed to

satisfy the averaging condition for various models of the environment [206, 220, 208.

These sequences often assume delta function pulses - i.e. bang-bang control - but

have also been analyzed under restrictions of finite pulse length and bounded controls

[212, 107]. We relax these conditions to state that the pulses used in a decoupling

sequence must only be strongly modulating, where we have not introduced restrictions

on the length of any pulse and free evolution periods. These restrictions arise when

a stochastic environment is considered.

5.2.3 Generalization to a Stochastic Environment

For a stochastic environment, we use the model introduced in Section 2.4 of additive

stochastic noise on the qubit Hamiltonian:

H =wd(t)Hd+ Hn(t), (5.27)

If we assume that the stochastic noise generator, H, (t), commutes with itself at

all times and is derived from a stationary, zero-mean, Gaussian process, then the

superoperator is completely determined by the second cumulant

K2 (t) = dti I dt 2 (L(ti)C(t2)) , (5.28)2() j 2 j 0  J0

with C = H ® I - I 9 H. When the noise operator does not commute with itself at

all times, the second cumulant still bounds the error. To derive an analytic result, we

analyze a single qubit under a single cycle of the common CPMG decoupling sequence,

consisting of two finite length pulses of constant drive strength Wd separated by a delay

period of length td over which Wd = 0. We further assume the pulses to be about the
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x-axis, with noise along the z-axis

H = WdUx + a(t)ax. (5.29)

If the correlation time of G(ti - t 2 ) = (E(t 1 )L(t 2 )) = L2 (a(ti)a(t2)) is long compared

to the cycle length, the correlation function, G(ti - t2 ), can be taken as constant, Gc.

In this case the second cumulant reduces to

K2 12 (5.30)
d

which goes to zero as IGcl /wd -+ 0. For stochastic processes, then, we have the

additional requirement that the averaging time is short compared with the correlation

time of the noise. This condition was studied in detail by Cappellaro, et al. [31].

5.3 Discussion

If the full form of the qubit-environment interaction is known and tractable, we

may directly optimize robust gates. In practice, it is not feasible to include the full

environment in gate optimizations, so we must design gates that are insensitive to the

environment. One method for achieving this is to compose gates of pulsing periods

of strong modulation interspersed with periods of free evolution. Requiring that

any portions of a quantum gate when the drive has non-zero strength are strongly

modulating ensures that the superoperator map for those periods does not include the

effects of the qubits drift Hamiltonian or the qubit-environment coupling Hamiltonian,

leading to a unitary, composable map.

Permitting periods of free evolution, where the drive strength is set to zero, ac-

complishes two things: Evolution under the drift Hamiltonian during these periods

allows for universal control of the qubits, and any evolution during these periods due

to the environment is determined exactly by the qubit-environment coupling Hamil-

tonian. By arranging that the drive and qubit-environment coupling Hamiltonians

are non-commutative, any sequence that averages the qubit-environment to zero over
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an averaging time shorter than the correlation time of the noise will suppress evolu-

tion due to the environment, resulting in an overall map for the gate that is unitary

and composable. For stochastic processes, requiring the averaging time of the noise

generator to be short compared with the correlation time of the noise fluctuations

ensures that the noise may be effectively refocused.

Strongly modulating pulses were first used in quantum information to design

pulses for NMR QIP [61]. These pulses were specifically designed to contain a small

number of relatively short periods of high drive amplitude and were noted to be ro-

bust to small uncertainties in the qubit drift Hamiltonian [61, 84]. However, when

attempting to directly optimize a gate requiring multi-qubit couplings - like a CNOT

gate - a single strongly-modulating pulse often cannot be used, as it is designed to

suppress the effect of the qubit drift Hamiltonian that often contains the generators

for multi-qubit operations. Using long pulses with weak modulation periods, optimal

control pulses can be designed to directly implement more complex gates, but anec-

dotal evidence has shown that these pulses often do not experimentally implement as

expected. This discrepancy can be traced to the periods of weak modulation which,

while allowing more complex operations to be performed, do not sufficiently modulate

the qubit-environment coupling to decouple the qubits from the environment. Thus,

unless a complete description of the environment is included in the optimization - an

impractical expectation - the experimental performance of weakly modulating pulses

ends up being sensitive to small variations in the environment.
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Chapter 6

Refocusing Noise: A Robust

CPMG Sequence

It was noticed early-on in the development of control techniques for NMR that non-

Markovian noise could be refocused by application of a ir-angle refocusing pulse to

reverse dephasing of magnetization to form a spin echo [78]. This sequence was

extended by Carr and Purcell to a series of equally spaced ir-angle pulses to form a

string of echoes [34]. It was quickly noticed that implementation errors of the r-angle

refocusing pulses caused pulse-error-induced dephasing of the initial quantum state.

Meiboom and Gill modified the CP sequence to ensure the initial quantum state to

be stored was maximally aligned with the phase of the refocusing pulses [149]. The

resulting Carr-Purcell-Meiboom-Gill (CPMG) sequence allows the robust storage of

a single orthogonal component of a quantum state.

The CPMG sequence is primarily used in magnetic resonance for situations where

significant field inhomogeneities are present. The versatility of the sequence lies in its

inherent robustness to pulse nutation angle errors and insensitivity to variations in

the static, BO, and the applied drive, B 1, fields. In the context of magnetic resonance,

the CPMG sequence is most useful to monitor dynamic processes, such as relaxation

and diffusion. For complex systems with multi-exponential decays, it is necessary to

acquire large numbers of echoes with short echo spacings to cover the entire range

of relaxation times. Averaging over the multiple echoes generated by the sequence
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further enhances the signal-to-noise ratio (SNR) of these measurements. In one-sided

and stray field magnetic resonance applications, where the inhomogeneity in Bo is

typically much larger than the available drive amplitude, the CPMG sequence is

particularly important. These applications include well-logging [71, 92], the NMR-

MOUSE [6], and ex-situ and single-sided NMR [150, 159].

The CPMG sequence has also proven to be an excellent means of dynamically

suppressing decoherence in quantum information processing [214, 18, 106]. The ex-

tent to which the CPMG sequence suppresses a stochastic noise process depends on

the memory of the process [31]. For processes with a correlation time, -r, approxi-

mately equal to the pulse spacing, r, the CPMG sequence is ineffective. When r is

significantly shorter than r the noise tends to self-decouple without need for applying

the sequence. However, in the limit -r >> r the noise appears static to the refocus-

ing sequence and may be effectively removed. Field inhomogeneities are a primary

source of high-memory noise and we focus in this chapter on how optimal control

theory (OCT) may be applied to the CPMG sequence to enhance its robustness to

incoherent noise.

Although the CPMG sequence is inherently tolerant of field inhomogeneities and

pulse nutation angle errors, the robustness of the sequence is ultimately limited by the

quality of the refocusing pulses. In almost all circumstances, it is important to develop

refocusing pulses for the CPMG sequence that simultaneously have a large bandwidth

with respect to static field inhomogeneity, account for drive field inhomogeneity, and

act as a universal rotation. Finding a global solution to maximizing bandwidth for a

given pulse time and subject to constraints of pulse power has proven to be difficult

[64], and perhaps impossible due to the complexity and size of the problem. However,

by taking advantage of extensive theoretical and numerical results in quantum control,

we may gain insight into the problem.

OCT provides a systematic means of finding consistent, effective solutions to the

problem of designing broadband refocusing pulses suitable for use in the CPMG se-

quence. We focus, in particular, on finding refocusing pulses that perform an identical

unitary operation over as large a range of resonance offsets and drive amplitudes as
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possible, while adhering to constraints of pulse length and maximum instantaneous

RF power. We also introduce a new method to compactly analyze the dynamics and

accumulation of pulse errors in the CPMG sequence.

6.1 CPMG Criteria

The CPMG sequence consists of periodic applications of a cycle, [r - 7r)y - 2T - 7)v

- T], which repeatedly refocuses transverse spin magnetization, leading to a train of

echoes. The accumulation of pulse errors during the sequence causes only a single

orthogonal component of the input state to be preserved - the component along

the axis of the refocusing pulses. Meiboom and Gill's modification to the original

Carr-Purcell sequence was to recognize this symmetry of the pulse errors, and shift

the phase of the excitation pulse applied before the sequence such that the initial

spin magnetization aligns with the axis of refocusing. There are, then, two common

measures for the success of a CPMG sequence: (1) a single orthogonal component

of the input state does not decay in the absence of relaxation, regardless of the time

between refocusing pulses (echo spacing) and (2) that the echo visibility be maximal.

These measures dictate the design requirements for the refocusing pulses: (i) the

direction of the effective rotation axis must be oriented exactly in the xy-plane, (ii)

the effective rotation axis and the initial spin magnetization must be aligned, and

(iii) the effective nutation angle must be 7r radians.

The influence of not keeping the effective field direction in the transverse plane is

seen by considering the efficiency of averaging static field inhomogeneities by a single

hard ir-pulse that is tilted an angle ( from the xy-plane. The zeroth order contribution

to the average Hamiltonian of a magnetic field inhomogeneity, Hit = Awo-, for the

sequence T - 7r) - r is

HT= Awo-(1 - cos 2() + Awo-, sin2(. (6.1)

Ideally, ( = 0 and the Hamiltonian vanishes. Notice that when the RF field is
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tilted from the transverse plane the refocusing under this sequence is incomplete and

similar to that engineered in to the Chemical Shift Concertina sequence [103], which

was designed to scale chemical shifts. In calculating (1) we have kept the nutation

angle fixed to 7r as we wish to explicitly illustrate the decrease in averaging as the

effective field is rotated out of the xy-plane. The residual contribution to HI' arises

from incomplete modulation of the spin dynamics. This reduction in the modulation

depth of the averaging is also detrimental to effective decoupling as described by

Waugh [217].

Next, consider the sensitivity of the CP cycle to a mis-setting of the pulse nutation

angle. We can observe this dependence by calculating the propagator corresponding

to one cycle of the CP(MG) sequence, with pulse nutation error c, applied to a spin

whose Larmor precession is off-resonance by an amount Aw:

U(c, Aw) = e~ 2w e- --zre e1T2-47-v ce-' AzT. (6.2)

For the sake of simplicity, the pulses are assumed to be on-resonance. The improve-

ment that Meiboom and Gill brought to the Carr-Purcell cycle was to recognize that

the refocusing is more robust when the pulse rotation axis and the initial magne-

tization are aligned. The benefit of the CPMG sequence is seen by examining the

retained magnetization under conditions of maximal alignment and minimal align-

ment - pin = uy, a, respectively. The overlap of initial and final magnetization under

the action of the cycle is

0,= Tr { 2 ,,U(e, AW)UX ,,Ut(E, Aw)} (6.3)

02 = 1 - 2 cos2 (Awr) 2 + 09(c) (6.4)

OY = 1 sin2(2Aor)c' + 0(J 5 ) (6.5)
8

Notice that if the rotation axis and the initial magnetization are aligned then the

pulse error appears only in the 4th order of E, while for the original CP sequence the

pulse error appears already in 2 "d order.
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The value of the CPMG sequence is that it simplifies the spin dynamics when

applied over a distribution of Hamiltonians. For most applications, the relevant dis-

tribution is a spatially dependent spread in off-resonance frequencies, Aw, and scaled

drive field amplitudes, wi, relative to a nominal value (wi = 1). The overall dynamics

then correspond to a convex operator sum over a classical probability distribution,

P(Aw, wi):

Po) = P(Aw,wi) [Ucycie(AW, Wi) Pin [Ucyce(AW, Wi)1 dAw dwi, (6.6)

where p" is the density operator after the application of n cycles (2n pulses). The

averaging must be undertaken after the propagator for each element of the distribution

is raised to the nth power. An important result in the design of CPMG sequences is

that the projection of the rotation axis of not only the refocusing pulse but also the

cycle propagator, Ucycle, onto the initial magnetization must be as large as possible

[91]. If this is true for each element of the distribution, it will be true when the result

is averaged over P(Aw, wi). Additionally, it will be true for all n, as the rotation

axis will remain unchanged when the individual propagators are raised to the nth

power - corresponding to repeated applications of the cycle. This requires the cycle

propagator for each element of P(Aw, wi) to be expressable as

Ucycle(AW, Wi) = e- "2 , (6.7)

such that all spins undergo a y-axis rotation of any angle over the cycle. This re-

quirement places demands on the effective rotation axis and nutation angle of the

refocusing pulses in the CPMG cycle.

The inherent robustness of the CPMG sequence to pulse nutation errors is reflected

in the rotation axis of the cycle propagator. As stated previously, when the pulse

rotation axis is taken to be aligned with the initial magnetization, the cycle rotation

axis error appears to 4 th order in small deviations from a ir nutation angle. However,

when the nutation angle is taken to be exactly 7r radians, the cycle rotation axis error
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appears as the cosine of small deviations from a y-axis rotation, first appearing to

2 "d order. It is apparent that a deviation of the refocusing pulse from a perfect y-

axis rotation is more detrimental to a successful CPMG sequence than is an identical

deviation from a perfect 7r nutation angle.

There is some flexibility in the precision of the rotation characterisitics of the

pulse, if a certain amount of signal loss is tolerable. The signal for a particular value

of Aw and wi after k echoes is given by:

My = (-1)k cos(ko)(1 - r2) + r (6.8)

where J is the deviation of the half-cycle nutation angle from 7r radians and r, is

the y-component of the half-cycle rotation axis for the isochromat being considered.

In order to retain 99% of the initial magnetization, for example, we require ry to be

0.995 for each isochromat, implying the pulse rotation axis must be within roughly 6

degrees of the initial magnetization, while the pulse nutation angle only need be within

roughly 12 degrees of 180 degrees. However, since it is desirable to maximize the

retained signal, it is necessary to require that the refocusing pulses be as close to a 7r

rotation about the y-axis as possible, leading to 6(Aw, wi) = 27r and Ucyce (Aw, w1 ) ~

I (identity) for all Aw and wi. For input states orthogonal to o-,, the deviation from

identity is cumulative for repeated cycle applications and leads to pulse-error-induced

dephasing of the input state.

6.2 Optimization Methods

A great deal of effort has been devoted in the past to using OCT techniques to

optimize excitation and inversion pulses which achieve a single state-to-state trans-

formation with a high degree of accuracy [40, 140, 185, 114]. The CPMG sequence,

however, requires pulses that perform a universal rotation, acting as a single uni-

tary operation on all input states. It has been shown previously that state-to-state

pulses can be made into universal rotation pulses, yielding refocusing pulses of twice
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the duration [133]. For example, given a 900 excitation pulse, a universal rotation

pulse may be constructed by first applying a phase-reversed version of the excitation

pulse, followed immediately by a time reversed version of the excitation pulse. While

this symmetrization procedure leads to good refocusing pulses suitable for applica-

tion in the CPMG sequence, we focus here on searching for general, non-symmetrized

pulses. Expanding the set of potential solutions could possibly lead to pulses with

better performance.

The dominant Hamiltonian generating the dynamics for an ensemble of isolated

spin- nuclei consists of the Zeeman interaction with the applied static, B0 , field and

the resonant interaction with the applied drive, B 1, field:

H(t) = A(t) 'e-i(wt+4(t))oz/2ei(wt+4(t))oz/2. (6.9)
2 4

Here the OCT pulse is a time-dependent modulation of the RF amplitude, A(t),

and phase, 4(t), applied at a transmitter frequency wt. In our notation, wi is a

dimensionless scaling factor of the drive amplitude. Our goal is to find time sequences

of the control parameters, {A(t), #(t)} which, taken over the set of Hamiltonians

determined by P(Aw, wi), correspond to action which is sufficiently 'close' to a desired

transformation, as measured by the average gate fidelity (eq. 5.4). Since we are

optimizing over a classical probability distribution we take the convex weighted sum

of the average gate fidelity for each member of the distribution:

Z= P(Aw, wi) <bs,,,(Upuise, Utarg), (6.10)
Aw,W 1

where2
Tr {Upuise(AW, Wi) Ut g}

<bAL,wi (Upuise, Utarg) = 4 (6.11)

The behavior of (6.11) with respect to Aw and wi is sufficient to ensure the satisfaction

of the CPMG criteria. Consider a general rotation in SU(2),

U(6,F) = eAd , (6.12)
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with nutation angle 6 about an axis given by the unit vector '. The corresponding

fidelity to a 7r rotation about the y-axis is

b(U, e = sin2 r = sin2 cos2 #, (6.13)

where 6 is, again, the nutation angle of the pulse and # is the angle between ' and

y. Small deviations from a ir rotation about the y-axis cause the fidelity to decrease

quickly, ensuring that high-fidelity correponds to the satisfaction of CPMG criteria (i)

and (ii). Additionally, as noted in CPMG criteria (iii), the requirement that it is more

important to minimize # than it is to minimize 6 is reflected in the behavior of the

fidelity. It is useful to note that, in our approach, it is easy to substitute a particular

functional for a different one. While our chosen performance functional exhibits the

general behavior we desire, we cannot rule out the existence of another functional

which may be more sensitive to deviations in # while allowing more flexibility in 0.

Such a functional could possibly lead to more accurate solutions with an enhanced

bandwidth.

6.2.1 Iterative Optimization Strategy

In the absence of constraints, the GRAPE algorithm guarantees that our optimized

pulse parameters will deterministically converge to the nearest local maximum of

average fidelity. The value of the average fidelity at this local maximum depends on

the structure of the control landscape - a geometric representation of the value of

the performance functional as a function of the control parameters. By definition,

the control landscape for our chosen performance functional is given by the weighted

convex sum of the control landscapes for each member of the distribution, P(Aw, wi).

The stucture and dimensionality of the control landscape is determined by our choice

of T, At, and P(Aw, wi). Limiting the maximum instantaneous RF power constrains

the ability of the algorithm to reach a local optimum from a given random initial

guess of the pulse parameters, {Ai,# }init

In idealized situations, two key results of quantum control theory provide some
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insight into the structure of the control landscape, and thus, the level of control we

can expect to achieve. In general, though, very little may be concretely said about the

structure of the control landscape in quantum optimizations, which makes it difficult

to find the best possible (global) solution. It has been shown that in the absence

of decoherence every local optima is exact [166, 35], and even in the presence of a

static, classical distribution of Hamiltonians there exist solutions which provide exact

implementations of the desired unitary operation for every member of the ensemble

(see online material for [166]). However, these results only apply to situations where

there are no constraints on pulse length and amplitude and the pulse shape is taken

to be changing continuously as a function of time. Imposing these constraints, as we

do in this work, implies that our solutions will not reach the desired optimum over the

distribution, and that no optimum will correspond to an exact implementation of the

desired unitary operator. When optimizing a particular initial guess to the nearest

optimum point, then, we are sampling from the set of non-degenerate local optima

without any guarantee of the performance being close to the global maximum.

We tried two systematic methods to investigate the maximum achievable pulse

performance for our techniques and constraints, each of which produced similar results

but differed in efficiency and information gained about the structure of the control

landscape. The first method involved choosing a particular width of the distribution

and optimizing hundreds of random initial guesses to obtain a histogram of achievable

fidelities. The best of these was then taken as the maximum performance we could

achieve for the distribution in question. The width of the distribution was then

increased, and the process repeated, until the highest achievable fidelity was no longer

satisfactory. Our results for a single width of the distribution confirmed the behavior

seen in [114]. A wide range of optimized fidelities were obtained, with the majority

clustered around higher values. The results of these optimizations tell us that the

static collective landscape for our problem contains many varieties of local optima

that may trap gradient algorithms, but the performance of most of these optima is

similar and normally correspond to good control.

To gain further insight into the way the collective landscape changes as new ele-
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ments are added to the distribution, we also implemented a new method, where a sin-

gle initial guess is systematically optimized over distributions of increasing width. We

first attempted to maximize the bandwidth of the pulse with respect to static field in-

homogeneity, while neglecting drive field inhomogeneity (i.e. setting wi = 1). The tar-

get bandwidth of the pulse was defined to be 2Awma, where the uniform distribution

was defined as P(Aw) = 1/M for M values of Aw = (-doma, ..., -w, 0, Jw, ..., Ama).

The value of 6w is determined by the length of the pulse in order to ensure that if high

fidelity is achieved at each point in the distribution, the fidelity taken continuously

in between will remain high. We found that a value of -I, where T is the length of

the pulse, is sufficient.

The iterative optimization procedure started with an on-resonance optimization,

P1 (Aw = 0) = 1, where the results of quantum control theory dictate that unit fidelity

is always achievable regardless of initial guess. The resulting optimized pulse was then

used as the initial guess for an optimization over 3 isochromats, P 2 (AW = -6w, 0,

6w) = 1/3, and allowed to run until a local maximum of the new collective landscape

was found. A small amount of randomization was added such that the the distance

between isochromats was not exactly equal. After a pulse was optimized over 3

isochromats, that pulse was used as an initial guess for 5 isochromats, Aw = (-2Jw,

-w, 0, ow, 25w), and so on.

The iterative process was terminated when the average fidelity achieved over the

distribution dropped below roughly 0.9. We found that by using this process, regard-

less of our initial guess, a series of convergent pulses with an associated fidelity vs.

static inhomogeneity bandwidth curve was generated (Fig. 6-1) and a satisfactory

result was obtained in only the order of tens of optimizations. The characteristics of

this curve varied depending on the initial guess, but always yielded usable solutions.

In order to account for drive field inhomogeneity a pulse from the related set generated

by the iterative optimization was chosen to be reoptimized. Without changing the

bandwidth of the pulse with respect to static field inhomogeneity, a certain amount of

drive field inhomogeneity was added. For example, if we chose a pulse that was opti-

mized over 41 values of Aw and we added in +10% drive field inhomogeneity, given by
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wi = 0.9,0.95, 1,1.05,1.1, the resulting distribution P(Aw, wi) = 1/204 would have

41*5 = 204 elements.

The success of this particular approach suggests that the structure of the collective

landscape characterizing the average fidelity does not change abruptly as the width

of the distribution is increased slowly. A good solution for a given distribution width

should therefore remain in the immediate neighborhood of a local optimum with high

fidelity for a slightly wider distribution width. However, concrete statements about

the structure of the control landscape are the subject of quantum control theory, and

are outside the scope of this present work.

6.3 Simulated Optimization Results

We present specific results obtained by optimizing the fidelity of OCT refocusing

pulses constrained to be 1 ms duration and with a maximum instantaneous drive

amplitude of Amax/ 2 7r = 5 kHz. Our pulses were defined piecewise constant over

100 intervals of 10 ps duration and the 200 degrees of freedom in the problem -

100 periods of varying pulse amplitude and phase - were optimized iteratively over a

uniform distribution using the GRAPE algorithm (Section 5.1.2) at each iteration. A

6 ps delay before and after the pulse was incorporated into the optimization to account

for hardware switching times in back-to-back applications of our pulses. These delays

are not directly part of the pulse waveform, but must be included in simulations and

experiments in order for the pulse to function properly.

Using the iterative optimization procedure we generated a series of related pulses,

terminating the series when the average fidelity dropped below roughly 0.9 for the

target bandwidth being optimized. Figure 6-1 displays two representative curves

of the average fidelity of the optimized pulses as a function of target bandwidth

(lAw < otarg). Not surprisingly, for small target bandwidths it is possible to find

pulses with an average fidelity very nearly unity; unit fidelity was achieved only for

the on-resonance optimization. As the target bandwidth is increased, the average

fidelity begins to drop, with the detailed characteristics of the curve dependent upon
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the initial guess. We found that the target bandwidth at which the average fidelity

drops below 0.99 was nearly the same for all initial guesses we tried. We took this

point to represent the maximum bandwidth achievable before pulse performance is

significantly affected. Based on this performance criterium, the best refocusing pulse

we could find for uniform drive is marked in fig. 6-1 and has an average fidelity

= 0.989 over a total bandwidth of 4 Amax. Figure 6-2 shows the calculated re-

sponse of a CPMG sequence using this refocusing pulse, in the absence of relaxation

and with uniform drive. The response is almost entirely maximal across the entire

optimization range with refocusing of over 96% of the magnetization at any offset.

This performance is retained at higher echo numbers. This confirms that optimizing

the average fidelity maximizes the echo visibility and allows the generation of a large

number of echoes.
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M,
M0
M0

I C

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.92

0.91

0 1 2 3
2 Awt,/ IAm

4 5 6

Figure 6-1: Two representative examples of the iterative optimization procedure utilized
in this study. The results shown by the red circles and blue squares correspond to two

iterative series of pulses derived from two different random initial guesses, respectively. The

pulses are iteratively optimized over an increasing target bandwidth of resonance offsets.

We find that, regardless of the initial guess, the resulting curves of average fidelity versus

target bandwidth are similar, indicating that the pulses for the different realizations have

similar maximum bandwidth. The filled in squares represent the pulses mentioned in the

text, with the inset showing the temporal profile of the pulse chosen for extended analysis.

High-resolution pulse profile and parameter list is available in supplementary material.

When drive field inhomogeneity is included in the optimizations, a trade-off be-
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Figure 6-2: Calculated magnetization as a function of resonance offset for the first (blue),
second (red), and 500th (black) echoes of a CPMG sequence using the 1 ms OCT refocusing
pulse optimized over |Awl <; 2 Am.. The simulation assumes a perfect excitation pulse, no

relaxation, and uniform drive. The time between refocusing pulse applications is 2-r = 2 ms.

The magnetization is very nearly retained over the entire optimization range, and shows no

additional degradation for higher echo numbers.

tween achievable resonance offset bandwidth and drive inhomogeneity compensation

becomes apparent. For modest drive strength variations of t10% (wi = 0.9- 1.1), the

average pulse fidelity of the pulse optimized over a static offset bandwidth of 4 Amax

drops to 0.972, while a pulse optimized over a static offset bandwidth of 3.2 Amax has

average fidelity of 0.982. For uniform drive the latter pulse has average fidelity of 0.996

over the respective bandwidth. We chose this pulse for further analysis. It's temporal

profile is shown in the inset of fig. 6-1. The drive tends to remain on for nearly the

entire pulsing time while the phase is non-trivially varied in a non-symmetric way.

To verify that high average fidelity leads to the desired pulse performance, we must

consider the fidelity and CPMG criteria of our OCT refocusing pulse as a function

of resonance offset. Given the relation between fidelity and pulse rotation errors

(eq. 6.13), an average fidelity close to unity implies that for every value within the

considered B 0 - B1 distribution, the net action of the optimized pulse is very close to

a 7r rotation around the y-axis. Figure 6-3 demonstrates that this is indeed the case.

For comparison, we include the corresponding quantities for a standard hard 7r pulse

of the same maximum drive amplitude (duration 100 ps). Note that, in general, the
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Figure 6-3: Fidelity and CPMG criteria as a function of resonance offset for the 1 ms OCT
refocusing pulse (Blue) optimized over |Awl 5 1.6 Amax and wi = 0.9 - 1.1, as compared
to a 100 ps hard pulse (Red). The solid lines indicate the response for uniform drive
(wi = 1), while the dotted (dash-dotted) lines indicate the maximum (minimum) angle over
the range of wi = 0.9 - 1.1. The rotation axis for the OCT pulse stays within 150 of the
initial magnetization over the optimized distribution and the nutation angle remains within
30' of 180'.

deviation of the rotation for our OCT pulse from a y-axis rotation is smaller than the

deviation from a ir nutation angle, as desired.
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6.4 Experimental Verification

In order to verify that our OCT pulses perform as expected in experiment, we per-

formed CPMG measurements on a sample of 90% D 2 0 / 10% H2 0. Roughly 3 mM

copper-sulfate (CuSO 4 ) was added to the sample in order to obtain a relaxation time

of T 2 e 270 ms at 300 MHz proton resonance. RF inhomogeneity was measured

to extend out to t20%, with the majority of the field strengths concentrated in the

t10% range. We performed CPMG measurements using the OCT refocusing pulse

shown in the inset of fig. 6-1, having a total duration of 1 ms and a maximum RF

amplitude Amax/27r = 5 kHz, with a time between refocusing pulses of 2T = 20 ms.

The 900 excitation pulse was an on-resonance rectangular hard pulse of amplitude

31.25 kHz to ensure the sequence performance was limited only by the refocusing

pulses. To test the performance under off-resonance conditions, we systematically

varied the offset of the proton transmitter frequency from the Larmor frequency in

100 Hz increments in the range from -10 kHz to 10 kHz. Figure 6-4a shows the am-

plitudes of the first 13 echoes of a CPMG sequence with OCT refocusing pulses as a

function of offset frequency. As a comparison, we show in fig. 6-4b the first 10 echoes

of a CPMG sequence using standard, hard refocusing pulses of 5 kHz amplitude. The

measurements confirm that, for the OCT refocusing pulses, pulse errors do not con-

tribute significantly to the observed decoherence and the echo visibility is maximal

over the entire optimized range of IAwl <; 1.6 Amax.

To further quantify the echo decay, we compared the amplitudes of the CPMG

echoes as a function of time for different values of the time between OCT refocusing

pulses, 2r, and for two particular values of resonance offset (fig. 6-5). The slope for

each of these echo spacings is nearly identical, in agreement with our expectation.

In addition, there is no evidence of additional pulse-induced relaxation decay when

shorter echo spacings are used. In fact, our results suggest that when more pulses are

applied in a given time period, T2,eff becomes slightly longer. This is most likely due to

T1 being slightly longer than T2 . The complex trajectories taken on the Bloch sphere,

as shown in fig. 6-6, cause the magnetization to spend some amount of time away

85



0.9
0.8 -
0.7 -

* 0.5 - -

2 0.4-?
0.3 - -.. 0..

0.2 -.- 100
0.1 -- - 2 0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 300 t [ms]

oAw /A,

(a) OCT Pulses

0.9-
0.8 -
0.7 --
0.6 -

0.4
0.3 - -0
0.2 - . --- -- ---- ...-.... 50

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 200 t[ms]
A

(b) Hard Pulses

Figure 6-4: Experimental results of echo amplitudes generated by CPMG sequences with
OCT refocusing pulses (top) and standard hard pulses (bottom) acquired at 300 MHz on a
sample of CuSO 4 doped 90% D2 0 / 10% H2 0 with T2 :: 270 ms. The results were acquired
sequentially by changing the resonance offsets systematically over the range of |Awl <; 2
Amax. The time between refocusing pulses is 2r = 20 ms. The CPMG sequence with OCT
pulses generates a uniform response over resonance offsets in the range of ±1.6 Am.. The
response of the excitation pulse is shown to be flat over the relevant range of resonance

offsets.

from the transverse plane. This implies that as more pulses are applied in a given time

period, the effects of T1 become increasingly important. While the exact proportion

of time spent away from the transverse plane varies depending on resonance offset, in

general the magnetization undergoes T1 relaxation for roughly one third of the pulse

duration. Using this approximation and a measured value of T 2 of roughly 270 ms

(using a hard pulse CPMG sequence on-resonance), the measured T2,eff of 282 ms for

2r = 2 ms implies a T1 of roughly 370 ms. These values predict an apparent T2 for

2r = 10 ms of 275 ms, consistent with our measurement. Similarly, the measured

and expected values of T 2 for 2r = 30 ms and 60 ms are close to 272 ms.

6.5 Comparison to Previous Pulses

Figure 6-7 compares the performance of our OCT pulse with previously published

refocusing pulses by examining the fidelity as a function of resonance offset, averaged
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Figure 6-5: Comparison of measured echo amplitudes with different values of 2r (time

between refocusing pulses), as indicated in the legend, for a CPMG sequence with OCT

refocusing pulses. The results show that a decrease in echo spacing does not lead to an

increase in the relaxation rate, indicating that no additional relaxation is induced by the

pulses. In fact, as the echo spacing is decreased and more pulses are applied, the measured

relaxation time becomes longer. As discussed in the text, this is caused by T 1 effects during

the application of the refocusing pulses. Additionally, the measured echo amplitudes show

a small transient effect of roughly 1% amplitude, in agreement with expectation, but not

apparent in the current display.

over +10% RFI. The Chirp pulse is a composite adiabatic pulse [93] composed of a

base element Chirp adiabatic inversion pulse [22, 21, 65] scaled to Amax/27r = 5 kHz.

The original pulse was 2 ms long, with a 60 kHz sweep width, 20% smoothing, and

on-resonance adiabaticity of Qo = 5. Our scaled version changes the sweep width

to 30 kHz and the pulse length to 4 ms, without changing Qo. We found that, with

the constraint of maximum RF amplitude, 4 ms was the minimum time required

for the pulse to fulfill the adiabatic condition and function properly. Additionally,

a previously derived 90* OCT excitation pulse was downloaded from the website

mentioned in [114] and turned into a 1.02 ms refocusing pulse consisting of 1020

intervals of 1 ps duration by the method detailed in [133]. The excitation pulse was

originally optimized over |AwI <; 1.5 Ama, and wi = 0.8 - 1.2. The performance

quality of the original excitation pulse with respect to Aw and wi is retained by the

symmetrized refocusing pulse.
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Figure 6-6: Bloch sphere trajectories during the OCT refocusing pulse for several values of
resonance offset as applied to a o- initial state. The trajectories for different isochromats
vary significantly but result in nearly identical effective rotations. Roughly two-thirds of
the magnetization is in the transverse plane during pulsing. The black 'o' denotes the initial
state, while the black 'x' denotes the final state.

As shown in the figure, each of the pulses considered performs very nearly as a

7r)y pulse over a range of resonance offsets of ±1.6 Amax. The Chirp pulse performs

most closely to the desired behavior over the operating range, but at the expense

of being four times longer than the OCT pulses. The performance of the pulse

derived by symmetrizing a previously reported OCT excitation pulse is similar to the

performance of our OCT pulse found by direct optimization without symmetrization.

The fact that similar limits of performance for OCT pulses were obtained by different

means and using many different initial guesses suggests that we may be very near the
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Figure 6-7: Simulated fidelity as a function of resonance offset for our 1 ms OCT pulse
optimized over ±10% RFI and |Awl 5 1.6 Amax (blue), a previously published OCT excita-
tion pulse [114] optimized over ±20% RFI and |Awl 5 1.5 Ama. and modified to be a 1.02
ms refocusing pulse (red), a 4 ms Chirp refocusing pulse (black) [93], and a 100 ps hard
pulse (green). All pulses have maximum RF amplitude Ama/27r = 5 kHz. The fidelities for
each offset were averaged over ±10% RFI (wi = 0.9 - 1.1). High-resolution time-domain
profiles for each pulse are included in the supplementary material.

global limit on bandwidth for the constraints considered, and that the performance

of many solutions are clustered around the global maximum. However, a proper

treatment of this claim requires further investigation and is outside the scope of this

work.

While it is instructive to consider the performance criteria of a single refocusing

pulse, it is difficult to use this information directly to infer the performance of the

CP(MG) sequence over many pulses. To do so we must consider not only the errors

which occur during a single pulse application, but how they correlate and evolve

during the application of many pulses. In the next section, we take advantage of

developments in the study of quantum channels to compactly describe the nature and

severity of errors that occur during the CP(MG) sequence and quantify the effects

those errors have on the performance of the sequence.

89



6.6 Pulse Error Analysis

To appreciate how the near satisfaction of the CPMG criteria for each isochromat

leads to a successful CPMG sequence, we consider the collective action averaged over

P(Aw, wi). As given by eq. 6.6, the overall dynamics correspond to a convex operator

sum over the distribution. While the action is unitary for each isochromat, the overall

action viewed as an effective map from pin to pout need no longer be unitary. In this

case, representation via a superoperator is needed to provide a compact and complete

description of the dynamics.

6.6.1 CPMG Superoperator

The elements of the CPMG superoperator for n cycle applications are determined by

the action of the map on a spanning set of basis vectors in Liouville space. In the

Pauli basis the superoperator for n cycles of the CPMG sequence is

(31 5n Ia) = 2Tr J P(Aw, wi) [Ucycie(Aw1)]" ca Ucce(AW, w1) dAw dwi

(6.14)

Here oa,p = {I, , oy, oz} are the usual spin-! Pauli operators and ja',p) are the

columnized version of the operators obtained by stacking the first column of the

respective Pauli matrix on top of its second column [81]. The columnized Pauli

operators are basis vectors in Liouville space.

While the unitary dynamics for a single spin-! are describable in a 2-dimensional

Hilbert space, the superoperator is described in a 4-dimensional Liouville space. No-

tice that, because the superoperator is averaged over a physical distribution, we must

describe a superoperator individually for each n. This is equivalent to the statement

made in section 6.1 that the averaging must be undertaken after the propagator for

each element of the distribution is raised to the nth power. Since we have approx-

imated the input density matrix of the system as being independent of this distri-

bution, the superoperator is completely positive and has a Kraus representation (see
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Section 2.1.2) with Kraus operators

Ak = iJUk, (6.15)

such that a portion of the sample given by the probability Pk experiences evolution

under the action of the unitary propagator Uk. Since we also require that the map

be trace-preserving, the Kraus operators must satisfy the condition

AkAt = I. (6.16)

The form of the Kraus operators given in eq. 6.15 is a result of the space of all

completely positive, trace-preserving (CPTP) maps for a single spin being convex

with unitary extrema. This means that any Kraus operator that is non-unitary may

be written as a linear sum of unitary Kraus operators. Thus, any non-unitary Kraus

representation of a CPTP map may be transformed into a linear combination of

unitary operators.

A map corresponding to unitary evolution will yield only one non-zero eigenvalue

and, as a result, be fully described by a single Kraus operator with unit probability. As

the CPMG superoperator will not necessarily be unitary, the Kraus representation will

generally consist of four operators with varying probabilities. Kraus representation as

a Pauli channel yields considerable insight into the multi-pulse dynamics that occur

during a CPMG sequence.

6.6.2 Pauli Channel Model

In the context of the CPMG sequence, the quantum channel is the sequence of re-

focusing pulses and delays taken together with incoherent noise given by magnetic

field inhomogeneities. The quantum mechanical entities to be connected are the ini-

tial and final density matrices representing the spin state after n applications of the

CPMG cycle. A Pauli channel representation, Cp, of the CPMG sequence acting on
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an uncorrelated input state, pi, for an ensemble of spins-! is defined by

3

Pout = C,(pi.) = Zpiipinaj, (6.17)
i=o

where ai = {I, ux, ay,, } and pi denotes the probability of the system undergoing

evolution under the action of the ith operator. For example, spin-spin (T 2) relax-

ation during a CPMG sequence with ideal pulses may be modeled as a Pauli channel

dephasing process about the longitudinal axis, corresponding to a,-noise. For this

process only two Kraus operators with non-zero probability are needed:

Ao(t) = 0.5 + 0.5e-t/T2 I

A 1 (t) = A 2 (t) = 0 (6.18)

A3 (t) = 0.5 - 0.5e-t/T2 a,

Ao refers to the identity operation, I, occuring with probability po = 0.5 + 0.5et/T2,

while A 3 refers to a transverse dephasing operation, az, occuring with probability

p3 = 0.5 - 0.5et/T2. It is clear from this model that, for short times, all input

states will experience the identity operation and remain unchanged. However, as time

progresses, the probability of the dephasing operation, ax, occuring will exponentially

grow, leading to the expected decay of the transverse spin states. Note, also, that the

az input state, corresponding to longitudinal magnetization, will remain unchanged

for all time, as desired.

Similarly, if considered as a pure dephasing channel and assuming imperfect y-

axis refocusing pulses, a Pauli channel representation of the CPMG sequence in the

absence of relaxation will have two operations with non-zero probability, 0, and I.

The , dephasing operator will cause the a., and a input states to decay, while

the ay input state will remain unchanged. In general, though, CPMG dynamics are

not pure dephasing and to properly model the sequence as a Pauli channel requires

consideration of all four possible Kraus operators. It is evident, then, that a successful

CPMG sequence with y-axis refocusing pulses must have asymptotically small and
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bounded probabilities for the o_ and uz operators such that the uy input state does

not decay.

The results of a Pauli channel fit for a CPMG sequence using our OCT refocusing

pulse optimized over |Awl < 1.6 Anm, and wi = 0.9 - 1.1 is shown in fig. 6-8a.

Based on a comparison of the fitted superoperators to the superoperators calculated

directly from eq. 6.14, the Pauli channel model captures over 99% of the action of

the map. It is evident that the decay and growth of the I and ou operations are not

entirely exponential, reinforcing the notion that the CPMG sequence cannot be fully

represented as a pure dephasing channel. In fact, there are three main elements to the

dynamics: An immediate loss of visibility due to the fringes of the distribution that

are not compensated by the 7r-pulse, a fast loss of visibility due to initial oscillations

that lead on large n to damping, and dephasing that preserves only a single orthogonal

input state.

The complete simulated dynamics of a CPMG sequence and CP sequence using our

OCT refocusing pulse is shown in fig. 6-9. Note that the complete CP(MG) dynamics

are calculated for every echo while the Pauli channel representation is calculated over

the cycle (2 echoes). The decay envelope of the CP sequence (pin = U.) is captured

almost entirely by the decay and growth of the probabilities of the Pauli channel

identity and oy operations, respectively. It is the oy and o, operations that represent

the dephasing part of the dynamics for a CP sequence. As the probability of the

u, operation occuring is not asymptotically small and bounded, the magnetization

retained by the CP sequence is nearly zero for large numbers of echoes. This contrasts

with the envelope of the CPMG sequence (Pin = 0-Y), where the dephasing operators

are o, and o-z. As the probabilities of these operators are asymptotically small and

bounded, the magnetization retained by the CPMG sequence is always close to unity.

A method for quantitatively evaluating the cumulative pulse errors that occur

during a CPMG sequence can now be formulated. We may assign a model based

on a Pauli channel that captures the three elements of the CPMG dynamics just
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Figure 6-8: Pauli channel representations for CPMG dynamics using four different refocus-
ing pulses. Probabilities of the identity (black solid), or- (red dashed), cr (blue dash-dotted),
and a, (green dotted) operations are shown as a function of the number of cycle applica-
tions. The sequences were simulated over lAwl <; 1.6 Amax and wi = 0.9 - 1.1 with time
between refocusing pulses of 2T = 2 ms. Similar behavior is seen when the value of r is
varied. Representation as a Pauli channel allows us to accurately compare the influence of
cumulative errors associated with each pulse. The dephasing rate constant, T2,pus, was
taken as the 1/e point in the decay of the identity probability.

mentioned:

Ao(n) = c, + 0.5e-nc/T2,uise I

A1 (n) = a

A 2(n) = c- 0.5e-nc/T2,pu.. 0%Y

A 3 (n) = F cz

(6.19)
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Figure 6-9: Full simulated dynamics for a CPMG sequence and CP sequence using our

OCT refocusing pulse optimized and simulated over lAwl ; 1.6 Amax and a range of drive

amplitudes of wi = 0.9 - 1.1. The time between refocusing pulses was set to 2,r = 2 ms. The

immediate and fast loss of visibility is shown by the initial and asymptotic magnetization

being less than unity. The decay of the transients is due to the dephasing portion of the

dynamics. Representation of the dynamics as a Pauli channel captures over 99% of the

action of the map, describing both the loss of visibility and pulse-induced dephasing.

In this model, T2,pulse is a time constant which represents the dephasing that occurs

due to the pulse errors and tc is the time between every 2 echoes (the cycle time). For

n << T2,puse/tc the CPMG and CP sequences perform roughly the same as an iden-

tity operation, while for n >> T2,pulse/tc the a- operator becomes significant, causing

the CP sequence to retain no initial magnetization. Note that the probabilities are

now a function of cycle number to reflect the distinction that T 2 is independent of

echo spacing, while T2,puise is not. The constants, cj,,,,, determine the asymptotic

behavior of the channel and represent loss of visibility. At the cost of losing infor-

mation about the initial magnetization oscillations present in any CPMG sequence,

the constants c. and c, are taken to be independent of n, such that the overall loss

of visibility due to pulse errors is still retained. The asymptotically retained magne-

tization for a CPMG sequence is given by M, = Cr + c , - (c2 + c2) and the rate at

which a CP sequence would lose signal is given by T2,puise. Moo and T2,pulse/tc are two

numbers that allow us to completely and compactly characterize refocusing pulses for

use in multiple refocusing sequences. The ideal refocusing pulse has T2,pulse/tc + 00

and Mo -+ 1.
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The result of a Pauli channel fit for CPMG sequences using the four pulses previ-

ously compared in section 6.5 is displayed in fig. 6-8. All pulses were restricted to a

maximum amplitude of Ama/27r = 5 kHz and were simulated over JAwl <; 1.6 Ama

and ±10% drive field inhomogeneity (w1 = 0.9 - 1.1). The difference in refocusing

ability for each pulse is clearly distinguishable (see table 6.1).

Pulse T2,pulse/tc Moo

Chirp 9 cycles 0.997
Non-symmetrized OCT 6 cycles 0.991

Symmetrized OCT 3 cycles 0.981
Hard 1 cycle 0.646

Table 6.1: Dephasing rate and asymptotically retained magnetization for CPMG sequences
using four different types of refocusing pulses.

6.6.3 Validity of Pauli Channel Model

A Pauli channel model is an excellent description of CPMG dynamics due to both the

refocusing being about a single cartesian coordinate and the averaging being complete

enough over the distribution in question to suppress the off-diagonal components of

the superoperator (eq. 6.14). A superoperator that may be accurately represented

as a Pauli channel must be diagonal in the Pauli basis. This requirement is derived

by noting that a Pauli channel (as defined by eq. 6.17) does not mix the components

of the input state. For example, for each orthogonal input state (o-,, ay, and o) the

output from the channel will remain either o-,, OY, or uz, but with a scaling factor.

In general, though, for an arbitrary distribution, P(Aw, wi), and a refocusing pulse

about an arbitrary axis, the superoperator describing the dynamics in the Pauli basis

will contain off-diagonal components. This can be seen by considering that for each

element of the distribution, the cycle propagator is of the general form

U (Aw1wj)
Ucycie (AW, Wi) = e_ 2 Mow .(6.20)
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The resulting density matrix after n applications of the cycle, for an uncorrelated

initial state pin, is then given by

(n) 2 no r'G nO F
put P(AW, i) Cos (IpinI) + isin -cos -(Ipir -d)-

S1 2 2 2 (6.21)
n6 nO nO

isin cos - (- p in I) + sin 2 - (-oi-) a dAwdwi.
2 2 2

This equation is an expansion of eq. (6.20) inserted into eq. (6.14). The dependence

of 0 and F on Aw and wi has been dropped for clarity and the argument nO is taken

to be modulo 27r. As noted in Ref. [92] using analysis in SO(3), if after a certain

number of cycles the range 0 = [0, 27r] is sampled uniformly over Aw and w1 , eq.

(6.21) reduces to

11
Pout = (W i IPnI + r )I 0 dAw dwl. (6.22)

12 2 )Pi("' I

The integrand may be expanded as

1 1
(I pin I) + 1 [r2 (O-ping2) + r (cy Piny) +

Zr (JzPinOz) + rxr, (Uxpinuy) +1 rxrz (OxPinOz) + ryrx (OyPinax) + (6.23)

ryrz (Ory PinOrz) + rzrx (crzpincrx) + rzry (crzPinc'Y)]

The same result may be arrived at by computing the eigenvalues of the Choi matrix,

as outlined in [81].

The averaging of the off-diagonal elements of the superoperator in the product

operator basis - elements of the form ajpinoj, where i f j - is dependent upon the

distribution and refocusing pulse in question. The inhomogeneity we consider here is

symmetric about the on-resonance Larmor precession frequency such that the average

of rz over Aw and wi will tend toward zero. Additionally, field inhomogeneities tend

to tip the effective rotation axis of a refocusing pulse out of the transverse plane while

minimally affecting the orientation in the transverse plane. Since we are considering

a y-axis pulse, r, will tend to be small for all values of Aw and wi. Thus, the only
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terms to be significant in eq. (6.23) will be r.,,, such that the dynamics is given by

a Pauli channel to a high degree of accuracy.

In the case of our OCT CPMG cycle, as shown in fig. 6-10, F- 5 is very nearly Ua

for all Aw and wi and the variation in 6 across Aw and wi is such that after roughly

30 cycle applications the averaging is complete enough that the map is given almost

entirely by IpinI and cypinay with equal probabilities. For the field inhomogeneities

considered here (JAw/21rl < 8 kHz and wi = 0.9 - 1.1), the model is an excellent

description of the dynamics, with a trace overlap of greater than 0.9999 between the

fitted and simulated superoperators for all cycles. Even for the case of hard pulses

where the variation of rV and 6 is large over a single cycle (see fig. 6-10), the trace

overlap is still greater than 0.999 for all cycles.

6.7 Discussion

The performance of OCT pulses with respect to the CPMG criteria demonstrates a

significant reduction in the variation of the net nutation angle and direction of the

rotation axis over the optimization range when compared to a hard pulse. Although

the variation is not fully eliminated, we were able to find a pulse which refocuses

over 99% of the initial magnetization over a range of frequency offsets 4 times the

maximum amplitude of the drive (t10 kHz) for uniform drive field. In the case when

the drive field has an amplitude distribution of +10%, we were able to find a pulse

that refocuses over 99% of the initial magnetization over a frequency range of 3.2

times the maximum drive amplitude (±8 kHz). The spin dynamics are well described

as a Pauli channel, which provides a compact form to predict the performance of

multiple pulses, both for CP and CPMG sequences, and allows the performance of the

refocusing pulses to be succinctly described by only two parameters: the asymptotic

visibility, M,, and the pulse-induced dephasing time, T 2 ,puise, of the sequence.

Potential applications of the methods described in this chapter include minimiz-

ing T contamination during pulsing by limiting the allowed trajectories on the Bloch

sphere, eliminating transients by designing pulses that dephase immediately due to
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Figure 6-10: Decomposition of the propagator characterizing a cycle [r - 7ry - 2r - 7ry - r]

with OCT pulses (left) and standard hard pulses (right) versus resonance offset. The top

panels show the projections of the net rotation axis onto the g axis, the middle panels the

nutation angle for a single cycle, and the bottom panels the effective nutation angle for 50

cycles. In each panel, the solid line is the response for uniform drive (Wi = 1), while the

dashed (dotted) lines indicate the maximum (minimum) over the range of wi = 0.9 - 1.1.

The OCT pulse was optimized over |Awl <; 1.6 Amax with a uniform range of Wi = 0.9 -

1.1. For this calculation r was set to 1 ms. Note that in the top two panels, the scales for

the OCT and hard pulses are different.
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pulse errors (i.e. T2,puise = 0), increasing bandwidth by directly optimizing the rota-

tion axis over a cycle, sculpting response of excitation pulses to directly match the

rotation axis of the CPMG cycle for each element of the field distribution, and sys-

tematically optimizing SNR by examining the maximum bandwidth achievable for a

variety of pulse lengths.
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Chapter 7

Robust Qubit Storage: XY-Type

Sequences and Logical Encodings

The CPMG sequence provides good decoupling properties for an arbitrary noise pro-

cess, but accumulation of pulse errors causes only one orthogonal component of the

input state to be retained. To achieve a robust qubit storage operation that treats all

input states symmetrically, modifications to the CPMG sequence are required. One

sequence for achieving a storage operation robust to pulse errors is the XY-4 sequence,

a modified CPMG sequence consisting of repeated applications of a four-pulse cycle of

equally spaced refocusing pulses with phases XYXY [141]. Pulse errors for the XY-4

sequence come in at second order, as opposed to first order for the CPMG sequence.

Enhanced robustness to pulse errors may be achieved by constructing higher order

sequences built off of the XY-4 primitive. In this chapter we discuss the construction

of XY-type sequences, and demonstrate how ideas from quantum information theory,

such as logical encodings and twirling, may be used to further suppress pulse errors

in XY-type sequences to implement a robust quantum memory.
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7.1 Constructing Supercycles to Suppress Pulse

Errors

Enhanced performance of decoupling sequences may be achieved by creating supercy-

cles out of a primitive rotation and is the basis for MLEV sequences [125] often used

for broadband spin decoupling [217]. The construction of supercycles has been later

formalized to a systematic procedure [217, 126] and used to derive new robust de-

coupling sequences, such as WALTZ-16 [180]. The procedure begins with a primitive

operation, R 1 , that gives a good approximation to an identity operation. Assuming

only unitary errors, this operation may be parameterized as a small rotation of angle

#1 about some axis fi1 ,

R1 = le- (7.1)

Two basic operations that have been applied to form compensation sequences to

be concatenated with the primitive operation: cyclic permutation and conjugation.

As for any rotation operator, the primitive operation may be decomposed into a series

of rotations. We call the last of these rotations Ro, characterized by a rotation angle

#o about axis no. The cyclic permutation operation consists of conjugating R1 by Ro,

R* = RoR 1 Ro, (7.2)

with the result being the cyclic permutation of Ro from the end of the primitive to

the beginning. Assuming 41 to be small, the effect of concatenating the primitive

with the cyclic permutation compensation sequence is, to first order:

R 1R* ~ + #1 (i1 + i*) -T. (7.3)

The correction is maximized if 40 and ho are chosen such that n* = -ni.

The conjugation operation inverts all phases of the primitive:

R1= RzR 1R4, (7.4)
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where

RZ = e- (7.5)

The first order effect of concatenating the primitive with the conjugate compensation

sequence is

R1R1 ~~ f#1nizlz. (7.6)

The conjugation operation corrects for primitive errors along the x and y axes, with

the effect maximized if the primitive z-axis error, niz, is small. Sequentially applying

these two compensation operations suppresses pulse errors in a given primitive to

increasingly high order.

7.1.1 Constructing a Primitive Operation

When building a primitive out of a given imperfect 7r-angle refocusing pulse, there

are many methods to choose from, with three being prominently investigated. In the

following we adopt the shorthand notation of X to denote an ideal ir-angle rotation

about the x-axis with a corresponding error of rotation angle e about an arbitrary

unit Bloch vector, ii, taken to operate immediately before the ideal pulse:

X = e- 'e-ienI+yynI) (7.7)

The first option is to simply apply the rotation twice, R1 = XX, as in the CPMG

sequence. By commuting the errors through the ideal -r rotations, we may write

R PMG e-i-7Jx e"7" -ie(nxI-nyIy-nzIz) -i(nxI±+nyIy+nzIz). (7.8)

Now assuming c to be small, we keep only the leading order terms of a BCH expansion

of the propagator, e eB - eA+B+ A,B+.to give

RCPMG l-i2nxIx. (7.9)
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Errors along the axis of rotation come in at first order in c and quickly accumulate,

leading to the fast decay of input states orthogonal to the axis of rotation character-

istic of the CPMG sequence.

The second option is to apply the refocusing pulse followed immediately by its

phase-inverted rotation, R1 = XX. Repeated applications of this primitive give the

phase-alternated CP sequence [75]. The complete action of this primitive may be

written as

R1 ACP e e-irIe ir1e -ie(n.I -nyIy -nzIz) -ic(-nxI-nyIy+nzIz) (7.10)

To first order in E, we see a similar error to the CPMG case, but phase-shifted:

R AC i2eny Iy

RCP r, E (7.11)

Due to errors normally being concentrated about the axis of refocusing, ny will tend

to be relatively small, leading to this sequence performing slightly better than the

CPMG sequence for inputs orthogonal to Iy. However, since the errors still come in

at first order in c, they accumulate too quickly to effectively store a general quantum

state.

A better option is the XY-4 sequence, RXY~4 = XYXY. To demonstrate the

enhanced robustness of the XY-4 sequence, we consider the same general error on the

X gate and assume phase shifts may be performed accurately, giving

Y = e-i"Iy e-e(nyI.-n.Iy+n.Iz), (7.12)

and a total action of

Rx - 4 =e-i"I:e-i"I e-ii e -i"I e-iE(nxIx-nyI -nzIz) e-iE(-n 1x+nxly+nzz.)

x e-se(-n2I+lvl-nzIz)e-(nyI.-n4+nzIz) 
(7.13)
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The leading term in the BCH expansion is now

R Y4 ~ fe-2ie(n-)2. (7.14

The ideal propagator for the primitive is the identity operation, with the error coming

in symmetrically at second order in c.

7.1.2 Construction of Higher-Order XY-Type Sequences

The supercycle approach may be used to further suppress errors in the XY-4 sequence

to derive the XY-8 and XY-16 sequences [76]. For the XY-8 sequence, Ro = e-i"I,

yielding

R* = Y(XYXY)Y = YXYX (7.15)

to give the XY-8 sequence, Rxy-8 = XYXYYXYX, where the action of the cyclic

permutation is to suppress the second order errors in I_- and Jz. The leading term in

the BCH expansion of the XY-8 propagator is

R - e n-nxn, . (7.16)

The XY-16 sequence then appends to the XY-8 sequence a phase inverted XY-8,

further suppressing errors. The final XY-16 sequence is then

XY -16 -4 XYXYYXYXXYXYYXYX (7.17)

with a leading order term in the BCH expansion of

RXY-16 ~ ,e2sni nn )1z/ . (7.18)

The dominant Iz error comes in at fourth order in E, leading to a high-degree

of rubustness to pulse errors. However, for a sufficiently large number of cycle ap-

plications a cumulative rotation about the z axis still occurs, causing a significant
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deviation from the desired identity operation.

7.2 Pauli Channel Representation of Errors

In a similar manner as was demonstrated for the CPMG sequence (Section 6.6.2), the

accumulation of pulse errors in the XY-type sequences may be compactly analyzed

using a Pauli channel representation (Section 2.1.3). The action of the XY-type

sequences may be described as transforming the dephasing of the CPMG sequence

about a preferential axis into a depolarizing channel that acts symmetrically over all

input states. Figure 7-1 demonstrates how sequences of increasing complexity lead

to a better Pauli channel, as measured by diamond norm distinguishability [110, 216]

between the full superoperator and the Pauli channel representation. As shown in

Figure 7-3, however, this desirable property of the XY-type sequences is only valid

for a limited number of cycles, when the o-z errors have not yet significantly accrued.

0.45,

.0.4
XY-4

S0.35-

0.3-
0) CPMG
.9 025 XY-16-

0 02 XY-8

S 0 48 6 80 100 120 140 160 180 200

Number of Cycles

Figure 7-1: Diamond norm distinguishability from a Pauli channel as a function of the
number of applied cycles for various decoupling sequences. As the complexity of the cycle
increases (from CPMG to XY-16), the resulting channel becomes more accurately repre-
sentable as a Pauli channel.

106



7.3 Twirling The XY-16 Sequence

Concepts similar to the twirling of a noise process [59] may be used to reduce and

symmetrize the effects of pulse errors in the XY-16 sequence, providing enhanced

performance. We start by noting that the XY-16 sequence acts as a dephasing channel

about the z-axis. To symmetrize the channel, we desire a pulse which operates on

the sequence to implement cycles of three periods of dephasing about the x, y, and

z axes, respectively. The overall channel will then look depolarizing. Any rotation

which maps Pauli operators to Pauli operators in an irreducible cyclic permutation

will suffice. One example is a Clifford group element [26] which implements a rotation

of - about the magic state with Bloch vector 1

R = e-3,3 (7.19)

This rotation corresponds to a quantum operation, R(p) = RpRf, that has the fol-

lowing action on the Pauli operators:

R7(X) =Y

7Z(Y)= Z

7Z(Z) = X. (7.20)

The effective geometric twirl is shown in Figure 7-2.

(XY-16)N (X -1 6)N (X -1 6)N

Time

Figure 7-2: Sequence to perform a geometric twirl of pulse errors in the XY-16 sequence. A
magic angle rotation (see main text) is performed after each XY-16 sequence consisting of N
cycles. Note that the twirling pulse is applied only three times, mitigating the accumulation

of errors associated with its implementation.
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7.3.1 Simulated Twirl

To demonstrate the action of the twirling operation, the XY-16 sequence was simu-

lated over a static distribution of resonance offsets and control amplitude variations

with and without twirling. The total system Hamiltonian may be written as the

sum of a drift Hamiltonian, Hd, taken to be time-independent on the time-scale of

the experiment and a control Hamiltonian, Hc(t), whose amplitude may be changed

during the experiment:

Hy3(t) = Hd + Hc(t). (7.21)

The incoherent noise is taken to act independently on each Hamiltonian, leading to

a spread of the drift energy parameterized by a particular deviation value, Aw, from

a nominal energy splitting, wo, and a particular scaling factor, w1 , of the control

amplitudes, A(t):
1

Hd(Aw) = (wo + AW)az, (7.22)
2

and

He(wi, t) = wiA(t)(cos(wtt + #(t)))u., (7.23)

where #(t) is a time-dependent phase control that is taken to be noiseless and Wt is the

carrier frequency of the control modulation. Assuming the controls are applied on-

resonance with the nominal energy splitting, setting Wt = wo, and taking a rotating-

wave approximation yields

11
Hy,(Aw, wi, t) = -Awoz + I wiA(t)(cos(#(t))a. + sin(#(t))ay). (7.24)

22

The performed simulations assume perfect state preparation and measurement,

with control provided by pulses of length 13 ps with constant amplitude and constant

phase set to either # = 0, 7r/2, 7r, 37r/2 for X, Y, X, and Y pulses, respectively. The

delay between pulses was taken to be 2T = 200ps and the incoherence was Aw/27r = {-

8 kHz, 8 kHz} in steps of 200 Hz and wi = (0.95, 11.05). The cycle superoperator over

the incoherent distribution was calculated as described in Section 2.3. The twirling
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pulses were taken to act instantaneously and ideally, as any imperfections in these

pulses may be absorbed into the errors that occur during the XY-16 sequence.

The simulation results are shown in Figure 7-3. In the absence of the twirling pulse,

the expected dephasing Pauli channel about az is shown, with the amplitudes of o,

and a, error operations remaining vanishingly small. When the twirling pulses are

included, the amplitudes of each of the errors become nearly identical over all cycles

and become smaller, due to the larger error about a single axis now being spread

equally over all three axes. Additionally, the amplitude of the identity operation

remains larger than for the non-twirling case, indicating that by spreading out the

errors, their effect has actually been reduced.

Untwirled

0.8

A20.6-

0.2

0 200 400 600 800 1000
Number of Cycles (3 XY-16 cycles per Twirling cycle

Twirled

- 0.8 -

.o

-0.6 --

20.4 --

-3 0.2 -

0 200 400 600 800 1000
Number of Cycles (3 XY-16 cycles per Twirling cycle

Figure 7-3: Result of an ideal twirl of an XY-16 sequence composed of hard pulses. The

probability of each Pauli error occuring as a function of the number of cycles contained in

each XY-16 sequence are plotted in the absence of twirling (top plot) and in the presence

of twirling (bottom plot). In the untwirled case, the a, error is dominant, rising in proba-

bility as the number of cycles is increased. The ax and ay error probabilities remain small

throughout the examined number of cycles. When twirling is applied, the error probabilities

of each Pauli operator become nearly identical over all numbers of cycles considered.
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7.4 Logical Encoding for Pulse Errors

A decoherence-free subspace (DFS) encoding is a class of noiseless quantum codes

which provide infinite distance correction for errors with appropriate symmetry. DFS

encodings are a generalization of the use of zero-quantum coherences in NMR spec-

troscopy and imaging [79, 215] and were suggested in for use in quantum information

processing as a means of suppressing noise acting collectively on a number of qubits

[225, 53, 127]. They have since been formalized in the language of quantum error cor-

rection as a subclass of noiseless subsystem passive error correcting codes [112, 224].

Many experimental demonstrations of DFS encodings exist, including implementa-

tions in NMR [62, 84, 32], quantum optics [119], and trapped ions [108]. They have

even been used as motivation for the design of an experimental apparatus in neutron

interferometry [165]. Here we provide a new application of a DFS to remove the effect

of pulse errors which accrue during application of a decoupling sequence.

Mitigating the effect of cumulative pulse errors in lengthy control sequences has

motivated arguments for reducing the number of refocusing pulses applied in a de-

coupling sequence [206]. For a given target decoupling time the application of fewer

refocusing pulses necessarily implies a longer wait time between refocusing pulses,

leading to decreased robustness to noise with correlation time on the order of the

pulse spacing [31] and increased sensitivity to diffusive-like processes [190]. Experi-

mentally, it is common practice to minimize the time between application of refocusing

pulses subject to the constraints of sample heating and amplifier capacity. The use of

a DFS encoding with a CPMG or XY-type sequence permits refocusing of stochas-

tic environmental errors while preventing the accumulation of pulse-induced control

errors throughout the sequence.

7.4.1 Requirements for Existence of a Logical Encoding

We consider a general case of two noisy qubits quantized in a large static magnetic

field along the laboratory 2 direction and coupled by an exchange interaction - the

same arguments may be made for other couplings, such as a dipolar coupling. The
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drift Hamiltonian is given by

Hd - tA + ___ + Jt - B , (7.25)
2 2 2

where wo and wo are the Larmor frequencies dictating the interaction strength of

qubit A and B, respectively, with the static quantizing field, and J is the strength

of the exchange coupling. As discussed in Section 2.4, the time-dependence of each

parameter is determined by a set of multi-point correlation functions, which for sta-

tionary, zero mean, Gaussian noise may be characterized by a single two-point cor-

relation funtion, G(r), and corresponding correlation time, re, dictating the noise

memory. For simplicity of our initial argument the coupling will be taken to be zero.

In this case, the Hamiltonian may be written as

Hd= w+(t) )A B - (oA - AB) (7.26)
2 Z Z 2 Z

where

oW't)+ ,At)w+(t) = + W (7.27)
2

and

w(t) = 2 . (7.28)

We assume that the noise acts collectively on the two qubits such that w (t) = 0

for all time. The resulting noise generator is then simply the total spin angular

momentum operator along the 2 direction, J2 = of ± u. The interaction algebra, A,

generated by this error operator yields the set of possible errors which may occur [112].

A may be explicitly evaluated by taking progressive powers of J with the identity

operator, I. The resulting interaction algebra contains three unique operators: fI,

Af +BZI anda . In order to define a DFS for this interaction algebra, the basis

states for logical qubits must be drawn from the commutant of A - the set of operators

which commute with A and are left invariant under the noise. To properly define a

qubit, we additionally require that a subset of the commutant of A satisfy the spin-1/2
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Pauli commutation relations. An appropriate set of states is:

L= ^B A B

O'= (O x + ) /2, (7.29)

0'L A BA~

where the superscript L denotes a Pauli operator acting on the logical space. This set

of states is not unique, but satisfies the two requirements of being in the commutant

of A and yielding the correct Pauli commutation relations for a qubit.

In the absence of any other interactions, the above DFSz encoding is perfectly

protected against the noise. Regardless of the strength or correlation time of the noise,

it has no effect on the defined subspace. However, if we reintroduce the second term

of the Hamiltonian, w_ (t) (a - of), the symmetry is broken and the error interaction

algebra is modified. If we make the simplification that w_ is time-independent and

single-valued, the effect is a simple rotation within the logical subspace - due to the

reintroduced term corresponding to a of operation. Experimentally, however, this

simplification is invalid and the assymmetric term must be refocused in analogy with

a usual spin echo for a single qubit.

We assume that a control field may be applied that acts identically on the two

qubits, with rotating frame Hamiltonian

He = wi(t) [cos(O(t))(Oc + of) + cos(6(t))(o' + oB)]. (7.30)

The terms o4 + uP and Ao + UB are not contained within the commutant of A

and so introduction of this Hamiltonian, while necessary not only to refocus the

assymetric term of the drift Hamiltonian but also to provide for universal control

of the encoded qubit, induces leakage out of the protected subspace. A special case

with no leakage occurs when a perfect 7r pulse about the 1 or y axis may be applied

[31]. In this case, the effective propagator over the length of the pulse in the sense

of Average Hamiltonian Theory [77] is given by U = e-ir/2(4+af) = _e-i/2(ao) or
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U = e e-i/2(Ge). Both of these correspond to rotations about the

logical i operator and any leakage during application of the pulse is returned to the

protected subspace at the end of the pulse.

Provided the noise fluctuates on a timescale long compared with the pulse length

(-r >> t,), the leakage during the pulse does not cause decoherence and may be

neglected. As discussed in Chapter 6 the errors associated with a non-ideal pulse cor-

relate with the underlying distribution of drift and control Hamiltonian parameters,

rendering the special case of a perfect 7r pulse invalid in practical implementations.

For the general case of non-ideal pulses an appropriate compensation scheme must

be applied to mitigate the effects of DFS leakage. In the following we assume the

fluctuations of any noisy parameters are slow compared with both refocusing pulse

lengths and the time delay between pulses, allowing us to treat the problem in terms

of an incoherent distribution of static parameters.

7.4.2 A DFS for Pulse Errors

We once again assume a drift Hamiltonian of the form of eq. (7.26), but with an

incoherent distribution over w+ and w- (see Section 2.3). A CPMG sequence applied

simultaneously to each qubit refocuses both terms in the drift Hamiltonian. In the

absence of coupling between the two qubits, the dynamics breaks into a direct sum

structure and the error analysis of Section 6.6 may be applied to write the unitary

action over n cycles of the CPMG sequence on a specific set of noise parameters as

U(w+, w-,n) ~ e- (7.31)

Because we are assuming an incoherent distribution of the noise parameters, taking

a convex operator sum over the full set of unitary propagators for each tuple of noise

parameters leads to pulse-error induced decay of any operator not contained in the

commutant of the interaction algebra generated by the dominant error: JY = 0 A +

C; . In analogy with the previously considered J, error, the CPMG error interaction

algebra contains predominantly the terms jA[B, CA + a', and CA o, and single qubit
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logical operators which commute with this algebra may be defined:

1IL (I^IB _A B
fL = fAoB -oAcB)/

2 ,

uC= (cx -uc )/(7.32)

a = (\Y - o)/2,

L CAo-B + A_ B )/2
Cz Z

We now have an infinite distance QECC for J, noise generators, meaning the code

is valid for any number of cycles, n, of the CPMG sequence. Note that the robustness

of this DFSy-CPMG sequence to noise in the drift and control Hamiltonians is equiv-

alent to the robustness of the CPMG sequence on a single qubit. We are still requiring

an average Hamiltonian over the cycle which is predominantly Jy = A+ -, which

requires the previously defined CPMG criteria to be satisfied (Section 6.1). Addi-

tionally, other terms in the error interaction algebra which were taken to be small,

such as of ± UB and oA ± CB, cause leakage out of the DFS, but are bounded and do

not accrue in analogy with the asymptotic stability of the expectation value of the

component of spin magnetization aligned with the effective refocusing pulse axis in

the single qubit CPMG sequence.

Thus far we have not considered the effect of the exchange coupling term. In

the absence of the coupling term we do not have universal control over the two

qubit system and may not initialize the system into the encoded subspace. However,

this term generates a rotation within the coded subspace about either f or -

depending on whether a DFSz or DFSy encoding is used - and so must either be

turned off or refocused. Assuming the distribution of coupling strengths is relatively

small and static, 7r refocusing pulses about either ao or of - again depending on the

encoding used - may be applied halfway through the decoupling sequence and at the

end of the sequence to refocus the logical rotation generated by the coupling. Any

static variation of the coupling strength may be accounted for by designing an OCT

pulse which operates with high fidelity over all values of the coupling. Because this

pulse is only applied twice in the sequence the errors will not accrue.
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By expanding the Hilbert space to include two qubits, a full logical qubit may now

be defined by the states invariant under the pulse-induced errors of the sequence.

In doing so, we have sacrificed the ability to have infinite depth protection from

variations in the symmetric drift Hamiltonian term. However, this protection may be

reintroduced by using a DFSz encoding and applying an XY-16 sequence instead of

the CPMG sequence. As shown in Section 7.1.2 the action of the XY-16 sequence is to

suppress pulse errors to fourth order and transform them to the 2 axis. The resulting

error generator for the XY-16 sequence is then also J2 and the DFSz encoding accounts

for both pulse errors and noise in the drift Hamiltonian. The disadvantage of this

approach is greater sensitivity to variations of the pulse errors. Recall that, for the

XY-16 sequence to operate correctly, the pulse errors must be constant over the

entire 16 pulse cycle. The CPMG sequence has the advantage that the cycle length

is significantly shorter (2 pulses). There is a trade-off, then, that dictates when each

of the proposed sequence should be used:

" CPMG - appropriate for when robust efficient refocusing of a single component

of a state is required.

" XY16 - appropriate for robustly storing an arbitrary quantum state for rela-

tively short times.

" DFSz-XY16 - appropriate for robustly storing an arbitrary quantum state for

long times, especially when the noise in the drift Hamiltonian is so severe that

it may not be directly refocused with a decoupling sequence, requiring the use

of a DFS.

" DFSy-CPMG - appropriate for robustly storing an arbitrary quantum state for

long times, especially when the pulse errors fluctuate too quickly for application

of an XY16 sequence.
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Chapter 8

High-Fidelity Control with High-Q

Resonators

In a common application of inductive manipulation and measurement of a quantum

system, a tuned and matched resonator converts a pulsed electrical signal into a

pulsed magnetic field and the resulting magnetic field produced by the quantum

system back into an electrical signal. The same principles apply as well to capacitive

coupling to electric fields. The conversion efficiency is determined by a number of

factors, including the quality factor (Q) of the resonator, defined as the ratio of

stored to dissipated energy in the resonant circuit. All other factors being equal,

both the magnetic field strength resulting from the application of an electrical signal

of a certain power and the signal-to-noise ratio (SNR) of an electrical signal induced

by the magnetic response of the sample scale as \ [179, 1, 45, 169].

An important consequence of using tuned circuits is that any resonator has an

associated ringdown time during which energy stored in the circuit dissipates. The

signal to be observed from the quantum system is typically many orders of magnitude

smaller than the control amplitudes, normally requiring a spectrometer deadtime of

at least five times the ringdown time before receiver circuitry, such as low-power

high-gain preamplifiers, can be switched on. When moving to a high-Q resonator

to enable faster control and greater SNR, the relative amount of stored energy in

the circuit increases, leading to longer ringdown and a deadtime that can exceed the
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characteristic phase coherence time (T 2) of the quantum signal, significantly lowering

measurement SNR and possibly preventing observation of the quantum signal at all.

A dispersion of interaction strengths between quantum degrees of freedom in the

sample may also lead to a spectral breadth which exceeds the resonator bandwidth

of frequencies which are efficiently converted, preventing the rotation or detection

of the entire spectrum with a single unoptimized pulse [88]. For these reasons it is

common practice, especially in the field of pulsed electron spin resonance (ESR), to

intentionally spoil the Q to reduce it to a value where these effects are no longer

significant [170].

Another challenge inherent to the use of resonant circuits for pulse transmission is

the distortions they produce of an ideal pulse waveform, once again due to the finite

response time of the reactive elements used to construct a tuned circuit. For low

values of Q (roughly 10 - 200), the effects of waveform distortions are relatively minor,

resulting in a typical drop in pulse fidelity of a few percent [85]. However, as the Q is
increased for applications that require high sensitivity the resonator distortions of the

ideal waveform lead to a pulse action on the quantum system that differs drastically

from a square pulse approximation.

Recent work proved that integration of a resonator impulse response function into

an optimal control theory (OCT) pulse-design algorithm allows broadband excitation

in pulsed ESR with limited power [193]. Here, we focus on applications that require

a universal rotation that operates identically on all input states, particularly those

that require a high Q resonator. Specifically, we describe how resonator distortions

of an ideal waveform may be integrated into an optimal control theory (OCT) pulse-

design algorithm to derive control sequences with limited ringdown that perform a

target quantum operation with high fidelity. We experimentally verify the method by

optimizing and implementing a bandwidth-limited OCT pulse, robust to static and

microwave field inhomogeneity, which allows the observation of the free-induction

decay (FID) of irradiated fused-quartz [57, 56] in a high-Q (~ 10,000) X-band (~ 10

GHz) rectangular cavity. We also consider a specific application of achieving universal

control of a anisotropic-hyperfine coupled solid-state electron-nuclear spin system
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via electron-only modulation even when the resonator bandwidth is significantly less

than the hyperfine coupling strength. Through the derivation of example pulses, we

demonstrate how the limitations imposed by linear response theory may be vastly

exceeded when using a sufficiently accurate system model to optimize pulses of high

complexity.

8.1 Resonator Model and Ringdown Suppression

Several models of the transient behavior of a resonator have been suggested and

analyzed in detail [148, 8, 200], with various methods suggested for the suppression

of pulse transients [210, 226, 211, 199]. We use the model of Barbara, et al. [8]

consisting of a series RLC resonant circuit capacitively coupled to a voltage source

through a real 50 Ohm impedance (Figure 8-1). We restate here the results of their

analysis relevant to our integration of the model into an OCT algorithm, with further

details available in the references.

The reactive elements necessary for efficient signal conversion have a finite response

time to variations of the control signal, causing distortions of the ideal waveform. For

a linear, time-invariant system, the waveform incident upon the quantum system,

y(t), is given by the convolution of the ideal control pulse, x(t), with the impulse

response, h(t), of the transmitting circuit,

y(t) = h(t) * x(t) = j h(t - r)x(T) dr. (8.1)

The impulse response gives a complete description of the transient behavior of the

transmitting circuit and may be either inferred from measurement, or derived from

an appropriate model. The ideal pulse is described as a time varying voltage of

amplitude v(t) and phase #(t) applied at a driving frequency, wt:

V8(t) = v(t) cos (wet + 4(t)). (8.2)

When the driving frequency is set near resonance with energy level splittings of the
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Figure 8-1: A general resonant transmission circuit may be modeled as a series tuned RLC
circuit capacitively coupled to a time-varying voltage source [8] (inset). The quality factor
(Q) of the resonator is given mainly by the circuit resonance frequency, wo = 1/VLC, the
coil inductance,L, and the coil resistance, r: Q ~ woL/r. The circuit impedance is matched
to Ro = 50 Ohms by varying the capacitances CT and CM. For high-Q resonators, the
dominant transient response of the resonator to a square pulse input of voltage, Vs, (bold
line) is an exponential rise (dashed line) and subsequent ring-down (dotted line) of the coil
current, iL, and resulting magnetic field. The ringdown may be suppressed by application of
a phase inverted compensation pulse at the end of the square pulse to drive the coil current
to zero. The characteristic transient ringdown time without compensation, r, = Q/wo, is
denoted by a cross.

quantum system, the magnetic field induces transitions between the eigenstates of

the system Hamiltonian. This model is representative of a general quantum control

scenario and allows us to analytically understand the dynamics of high-Q resonators.

The resonator circuit response to an impulse of constant amplitude and phase

may be determined by the application of Laplace transformation techniques [191].

The resulting filtered output waveform in the time domain is determined by the

inverse Laplace transform, calculated via a partial fraction expansion, of the filtered

waveform in the s-domain. The transient coil current, iL(t), which is proportional to

the magnetic field applied to the sample, may be represented as a sum of poles, ok,
and corresponding residues, dk, after inverse Laplace transformation:

2L(t) cx >1 dke-kt. (8.3)
k
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The four reactive elements in the circuit lead to four poles of the transfer function:

1. A steady-state oscillation at the driving frequency, wt.

2. An exponentially decaying DC transient.

3. An exponentially decaying oscillation at the probe free-ringing frequency, Q.

4. An exponentially decaying oscillation at minus the probe free-ringing frequency,

-(Q.

It is the third and fourth poles that are of most interest for determining the transient

response of the circuit, as the DC transient is normally very small and the steady-

state oscillation may be eliminated by moving into a reference frame rotating at the

driving frequency. In a rotating wave approximation, this frame rotation also allows

us to neglect the effect of the fourth pole.

The relevant third pole, J3, may be written as

63 = * = 7 - Zwof (1 - 4 2, (8.4)

where -y = wo/Q is the rate of transient decay in terms of the inductor quality factor,

Q = woL/r, and

1 (8.5)14Q2

is a scaling factor determining how close the resonator free-ringing frequency, Q, is to

the tuned frequency, wo = 1/LCT. For high-Q resonators, r << Ro, Q ~ wo, and

the transient oscillations in the rotating frame are critically damped. The resulting

dynamics may then be approximated as a simple exponential ringup and ringdown of

the pulse amplitude with time-constant

T, = Q/wo. (8.6)

This time-constant differs from the commonly used 2Q/wo, which is valid only for an

isolated series RLC circuit without the inclusion of a matching capacitor [1481. Such
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approximations are used here only for the sake of argument and demonstration; when

high-fidelity control of a particular system is desired the full form of the resonator

transfer function must be experimentally determined.

Resonator ringdown may be suppressed by the application of a trailing compen-

sation pulse of appropriate length and amplitude to drive the energy stored in the

resonator to zero at the end of the pulse [89, 144]. As shown in Figure 8-1, this

compensation pulse can significantly shorten the spectrometer deadtime, but at the

expense of introducing an additional rotation to the quantum system. In the next

section, we describe how the resonator transfer function and a ringdown compen-

sation pulse may be integrated into an optimal control theory (OCT) algorithm to

enable high-fidelity control even in the presence of transient effects and the additional

rotation introduced by ringdown suppression.

8.2 Optimizing Bandwidth-Limited Controls

To include ringdown suppression and account for distortions of the ideal control pa-

rameters due to the limited bandwidth of a high-Q resonator we make several modi-

fications to the OCT GRAPE algorithm outlined in Section 5.1.2. We first resample

the control parameters to ensure the calculated propagators and gradients accurately

reflect the distortions of the ideal control fields during periods when the applied con-

trol voltages are constant. For clarity, we define a control period as the time At

during which the applied control voltage is constant, and a evolution period as the

resampled time At/n, during which the control field seen by the quantum system is

approximated as constant. Concretely, we begin with a set of undistorted controls,

{u}, where j = 1,..., N and resample to obtain a new set of undistorted controls

{ I}, where m = 1, ..., M and M = nN + n, for n, samples per N control periods

and n, values of zero appended to the waveform to account for pulse ringdown. We

then define a mapping between the resampled undistorted controls and a new set

of distorted controls, {Uii" }e, given by the discrete convolution of the undistorted
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controls with the resonator transfer function (8.1):

= hk * hM-l+1. (8.7)
l<m

In contrast to the infinite-bandwidth case, the value of the control parameters

during the mth evolution period depends to a certain degree on the value of all previous

controls. As a result, the gradient of the performance functional when control period j

is perturbed depends on the change in the unitary propagator for all evolution periods

m > (j - 1)n8 . As derived in Appendix A the gradients for bandwidth-limited controls

are

(j (8.8)
6Uk m>(j-1)n. k

where (km(j) is the convolution of a top-hat function, E, with the resonator response:

S(j)= h-+1B(j, n,). (8.9)
l<m

The top-hat function, which is formally defined in Appendix A, accounts for the

resampling of the control periods into evolution periods. The convolution of this

function with the resonator impulse response may be interpreted as a weighting func-

tion of the gradients of all evolution periods affected by the perturbation of a given

control period. The individual gradients of the evolution periods are

= -2Re Kmji-Hi m XKmIm , (8.10)
JSUk n.

where Xm and Pm are defined in Appendix A. Note that pulse updating is done only

for control periods, with evolution periods serving as a calculational tool.

Optimization of the compensation pulse for elimination of ringdown is performed

as a sub-routine and is not considered in the calculation of the gradient direction.

However, the compensation pulse is taken into account while calculating the total

pulse fidelity and while performing a line search to optimize the step size in the gra-

dient direction, c. In practice, the line search is performed by choosing three values
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of C, optimizing the compensation pulse for each value, evaluating the fidelities of the

resulting pulses, fitting to a quadratic, and taking the maximum value. The routine

for the compensation pulse optimization may be implemented as a two-dimensional

search over the length and amplitude of an appended final control period that min-

imizes the ringdown. An implementation of the GRAPE algorithm for bandwidth-

limited control is described in Figure 8-2.

8.3 Optimization Results and Experimental Veri-

fication

Experiments were performed using a standard irradiated fused-quartz sample con-

tained in a Varian E-231 rectangular cavity on a home-built X-band pulsed ESR

spectrometer. The loaded quality factor and impulse response function of the cavity

were measured by fitting an exponential to the rising and falling edges of a square

pulse digitized with a pick-up coil inserted into a cavity iris opposite to the sample.

Care was taken to only weakly couple the pick-up coil to the cavity fields in order to

disturb the cavity mode structure as little as possible.

We measured a loaded Q of 8,486 for the Varian cavity, giving a ringdown time-

constant of Tr, = 142 ns at a resonance frequency of wo/21r = 9.5236 GHz. The r2

value of the exponential fit was 0.9804, verifying that modeling the transient behavior

of our high-Q resonator as an exponential rise and fall of the field strength is a good

approximation. We found that a spectrometer deadtime of 1.2 ps was required to

allow the pulse ringdown to decay to a value below the spectrometer noise floor. The

inhomogeneous phase coherence relaxation time of the sample, measured by observing

a spin echo, was T2* ::: 250 ns, preventing us from observing a useful FID of the quartz

sample when using an unoptimized pulse.

To observe the quartz FID we optimized a bandwidth-limited OCT pulse that

performs a high-fidelity ir/2 rotation about the x-axis robust to variations in the static

and microwave fields. The resonator model discussed in Section 8.1 was included
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Figure 8-2: The bandwidth-limited GRAPE pulse optimization algorithm proceeds in a

similar manner as for undistorted controls [105], with the resonator transfer function in-

cluded in the calculation of the pulse propagator, average gate fidelity, and gradients. The

notation is explained in the main text, with k = 1 for simplicity. An initial guess of con-

trol amplitudes is resampled and convolved with the resonator transfer function to yield

a distorted set of control amplitudes including ringdown. A compensation pulse period is

then optimized in a sub-routine and appended to the waveform to yield a distorted set of

control amplitudes with minimized ringdown. The propagator for each evolution period of

the distorted control amplitudes is then calculated and the average gate fidelity computed.

The set of propagators is used to calculate the gradient direction of the fidelity with respect

to the undistorted controls. A line search is then performed to optimize the step-size in the

gradient direction. At each step of the line-search the sub-routines to calculate the updated

distorted control amplitudes and corresponding compensation pulse are called, accounting

for the compensation pulse not being included in the gradient calculation. The undistorted

controls are then updated according to the gradient direction and step-size and the process

iterates until a desired value of the fidelity is achieved.
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(b) Simulated Pulse Response

Figure 8-3: (a) Time-domain profile of a transients optimized OCT pulse with ringdown

suppression implementing a 7r/2). rotation robust to variations in the static and microwave

field strengths. The dashed line represents the undistorted controls and the solid line

represents the control fields seen by the spin system after transmission through a resonator

with Q = 8,486. The control amplitudes are normalized to a nominal Rabi frequency of

W1,nom/27r = 5.26 MHz. Optimization parameters and further details are discussed in the

main text. Note that this pulse is phase-refocused, in that all spins in the sample are

rotated with the same phase. (b) Simulated pulse fidelity over an extended range of static

and microwave field inhomogeneities, demonstrating the robustness of the pulse.
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in the optimization, as well as ringdown suppression. The Hamiltonian used for

optimization, in a frame rotating at the nominal electron Larmor frequency, was

H(Aw, wi) = 1Awo- + 1 wiA(t)o-, (8.11)

where Aw is a resonance offset parameter representing static field inhomogeneity in

units of rad/s, wi is a scaling factor of the nominal Rabi frequency, Wi,nom, representing

microwave field inhomogeneity, and A(t) is the time-dependent amplitude modula-

tion representing the OCT pulse, with range {-Wi,nom, Wi,nom}. The spin dynamics

was calculated by taking a convex operator sum over a uniform classical probability

distribution of field inhomogeneities, P(Aw, wi) [24].

-1 -0.5 0 0.5 1 1.2 1.5 2 2.5
Time (ps)

Figure 8-4: Digitized pulse and free-induction decay (FID) of irradiated quartz. The tran-

sients optimized OCT pulse shown in the previous figure was applied to an inhomogeneously

broadened solid-state sample of irradiated fused-quartz in a rectangular cavity with Q =

8,486 at a resonance frequency of 9.5236 GHz. The black solid line for t < 0 shows the pulse

profile digitized through a pick-up coil inserted in the cavity. The digitized profile closely

matches the calculated profile with the only ringdown being a small oscillation which decays

after roughly 75 ns. The resulting quartz FID is shown as a blue solid line for t > 0 and

was acquired after a 75 ns spectrometer deadtime. The static field was moved roughly 2

MHz off-resonance (still within the high-fidelity operation regime of the pulse, as shown in

Figure 8-3) to emphasize the shape of the FID. For comparison, a digitized square pulse of

length 1 ps is shown as the black dashed line. In a separate measurement, the necessary

spectrometer deadtime in the absence of ringdown suppression was determined to be 1.2 Ps

(shown as a dotted vertical line), which would prevent the detection of a significant portion

of the FID. The separate plots have been scaled for visual clarity.
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The pulse was defined piecewise constant over 100 steps of 10 ns each, giving a total

length of 1 ps. The nominal Rabi frequency, Wi,nom/27r = 5.26 MHz, was determined

by Fourier transforming the result of a standard spin-echo Rabi oscillation experiment

at a microwave power of 4 Watts and identifying the dominant frequency. The pulse

was optimized over a microwave inhomogeneity of wi = (0.95,1,1.05) and a static

field inhomogeneity of Aw/27r = {-2 MHz, 2 MHz} in steps of 250 kHz. The pulse

optimization took roughly ten minutes on a standard laptop computer and resulted

in an average fidelity over the distribution of <b = 0.9905. The resulting pulse profile

and response over an extended distribution is shown in Figure 8-3. The free-induction

decay (FID) of irradiated fused-quartz resulting from application of the pulse in the

Varian cavity is shown in Figure 8-4, along with the digitized pulse profile measured

through the pick-up coil. A spectrometer deadtime of 75 ns was required to allow the

small oscillations shown at the end of the digitized pulse to decay. This deadtime was

included in the pulse optimization as an additional control period of zero amplitude,

allowing observation of the full FID at high Q and verifying the simulated behavior

of the bandwidth-limited OCT pulse '.

8.4 Controllability With Limited Bandwidth

For accurate spectroscopy and high-fidelity quantum information processing, control

sequences must drive transitions and excite coherence over a range of frequencies

given by the coupling structure and any uncertainties of the system Hamiltonian.

A common solution, based on linear response theory [116], is to require the Fourier

spectrum of the control pulse to contain significant contributions from all frequencies

'Upon initially implementing the optimized pulse we could not observe an FID due to spurious
ringdown from a source which did not appear in the waveform digitized through the pick-up coil.
The source of this ringdown was determined to be on-resonant leakage of the carrier signal through
a double-balanced mixer used to mix in the ideal pulse waveform from an Arbitrary Waveform
Generator (AWG). Leakage of this type has been noted previously [202] and was compensated using
a similar method. Before the mixer we split off the carrier signal, phase-shifted it 180 degrees, then
recombined it with the amplifier output through a directional coupler, appropriately adjusting the
amplitude to cancel the amplified leakage signal. This method of active feedback suppression is also
similar to the technique used by Broekaert and Jeener to compensate for radiation damping effects
[29].
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present in the quantum system [154, 90]. The principle, and limitations, of this

approximate solution may be succinctly demonstrated using a description of the pulse

trajectories in k-space [190]. In this description, each frequency w present in the drift

Hamiltonian of the quantum system has an associated wavenumber, k = wt, whose

value is modulated by the control Hamiltonian during the length of the applied pulse.

The accuracy of predicting spin response through Fourier analysis depends pri-

marily on the validity of two approximations. The first is that any rotations that

occur during a period where the pulse waveform is constant are small, such that the

full spin response given by the exponential of the Hamiltonian generating the motion

may be truncated to first order. The second is that the amplitude of the control

Hamiltonian during any pulse period be significantly greater than the amplitude of

the drift Hamiltonian, such that the axis of rotation may be taken as being com-

pletely determined by the control Hamiltonian. When these two criteria are satisfied,

excitations of the quantum system as a function of frequency may be written simply

as the Fourier transform of the time-dependent control amplitudes, x(t):

S(w) = -i j x(t)e-i dt, (8.12)
0I

where t, is the pulse length and S(w) is the observable spin response generated by

the controls, which are taken for simplicity to be amplitude modulated only. If we

now write the controls as a sum of Fourier components,

x(t) = nx ei, (8.13)
n=-oo

we see that the only contributions to the observable signal are from Fourier com-

ponents, n, where xn $ 0, such that the corresponding vector in k-space may be

effectively refocused during the pulse. Within the linear response approximation,

then, pulse design is frustrated by the narrow-band filtering property of a high-Q

resonator. However, the ability to numerically optimize pulses allows us to move into

a regime where linear response is no longer valid.
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For general rotations there is significant mixing of the various k-vectors that leads

to a complex spin response. Also, a general axis of rotation is not given entirely by the

control Hamiltonian, but by the vector sum of the control and drift Hamiltonians.

These effects are often small, but may be used to generate spin response deemed

inaccessible by linear response. By solving the equations of motion exactly under

an accurate system model, without making approximations, we can find bandwidth-

limited pulses that retain the same degree of controllability as for infinite bandwidth

pulses, albeit with a reduction in efficiency due to the inability to directly address all

transitions in the system.

We first consider an ensemble of uncoupled spins with Larmor frequency, wo, off-

resonance an amount Aw = wo-wt from a control field applied at wt. The Hamiltonian

in a frame rotating at wt is given by eq. (8.11), where the term proportional to a, is

the drift Hamiltonian, Hd, and the term proportional to u_ is the control Hamiltonian,

Hc. Generating a computationally universal set of quantum operations requires the

ability to generate all elements of the Lie algebra spanning the Hilbert space [46].

For uncoupled spins, the Lie algebra is SU(2), with basis operators {I, ax, a, oz}.

The control algebra generated by a given set of Hamiltonians may be computed by

taking successive Lie brackets to all orders [167, 177]. For Hd and He considered here

[Hd, He] oc cy, such that the generated control algebra is identical to SU(2), indicating

universal control of the system by appropriate application of the given Hamiltonians.

The efficiency of control is difficult to quantify in general, but may be posed as

the non-commutativity of effective Hamiltonians that may be generated during the

pulse between incremental time periods. For SU(2) we may take a simple geometric

view, posing the problem of efficiency as the maximum angle of rotation that may

be generated over an incremental time period or, equivalently, the maximum angle

between effective Hamiltonian vectors that may be generated from one instant in time

to the next. Assuming an exponential model of the pulse transients for simplicity,

and taking A(to) = 0 and wi = 1, we examine the non-commutativity of

1
Heff (to) = -Awo-, (8.14)

2
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and

Heff(to + 6t) = -Awo- + -A(to + t)(1 - e 7t)oa. (8.15)
2 2

The controllability of the system has not changed, provided Q is finite, as these

Hamiltonians generate the same Lie algebra as for infinite bandwidth. The angle

between the two Hamiltonian vectors, 0, is given by

1 A(to+6t) 1_-W,0 = tan- (1 - e o) . (8.16)

The size of the generated incremental rotation depends on the ratio of the target con-

trol amplitude to the resonance offset and the value of Q, with increasing efficiency

for larger control amplitudes and smaller Q. Given that control amplitude is propor-

tional to VI, there is an inherent trade-off between sensitivity and the efficiency of

generating rotations that must be considered. However, given sufficient time and a

sufficiently accurate system model, pulses may be optimized that address transitions

that are arbitrarily far off-resonance without containing Fourier components anywhere

near the transition frequency. In the following section we provide examples, in the

context of anisotropic hyperfine coupled electron-nuclear spin systems, of pulses that

significantly exceed the limitations imposed by linear response theory.

8.5 Application of Bandwidth-Limited Control to

Electron-Nuclear Spin Systems

To demonstrate that universal control via electron-only modulation may still be

achieved when using a high-Q resonator we numerically optimized a pulse which

implements an electron spin flip,

Ud = e-xP®I", (8.17)

for a le-1n sample in a resonator with bandwidth smaller than the size of the hyperfine

interaction. The ability to achieve such an operation implies full controllability of the
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spin system with electron-only modulation (see Section 3.2). The control Hamiltonian

was taken to be a time-dependent amplitude modulation of the electron spin only,

Hc(t) = IA(t)oxe 0 I". (8.18)

The pulse was optimized using the algorithm outlined in Section 8.2 using a model

of the resonator given in Section 8.1 with a Q of 10,000 (BW ~ 1.2 MHz). The

drift Hamiltonian parameters were taken from [86] and are defined in Section 3.2:

wZ/27r = 11.885 GHz, wz/27r = 18.1 MHz, wz/27r = -42.7 MHz, and wzx/27r = 14.2

MHz. The carrier frequency of the pulses was set resonant with the 1-4 transition,

wo/27r = 11.909 GHz. The nominal Rabi frequency was taken to be Wnom/27r = 100

MHz. The resulting pulse is shown in Figure 8-5. A pulse time of 5 ps was chosen

for convenience to provide sufficient time to easily achieve the desired operation. We

expect solutions for shorter pulse times to exist, but have not systematically addressed

the minimum time needed to achieve the operation for a given set of parameters.

The final simulated average gate fidelity of the pulse was 0.9901 even when, as shown

in Figure 8-5, all significant frequency modulation is much less than the hyperfine

splitting.

8.6 Discussion

Integrating the impulse response function of a high-Q resonator into an optimal con-

trol theory pulse design algorithm allows higher sensitivity and signal-to-noise ratio

in measurements without sacrificing the ability to perform a universal set of quan-

tum operations with high fidelity. The limits imposed by linear response theory may

be vastly exceeded when using numerically optimized pulses, allowing universal con-

trol of an electron-nuclear spin system even when the hyperfine coupling strength

is significantly greater than the resonator bandwidth. These solutions rely on the

non-commutativity of the effective Hamiltonians generated throughout the pulse and

the ability to accurately engineer the exact response of a quantum system to complex
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Figure 8-5: (a) The undistorted (dashed line) and distorted (solid line) control amplitudes

of a pulse designed to perform a -r rotation of the electron spin in a resonator with Q =

10,000. Access to such an operation guarantees universal control of the nuclear spin via

electron-only modulation [86]. The pulse consists of 500 time steps of At= 10 ns each for

a total length of 5 ps, with wi,nom/27r = 100 MHz. The simulated average gate fidelity

is <h = 0.9901. (b) The single-sided amplitude spectrum of the undistorted pulse (dotted

line) and the distorted pulse (solid line) filtered by the resonator admittance function (bold

solid line). The transitions necessary to achieve the desired operation were separated by

an amount (lW23 - w141 = 51 MHz) much greater than the bandwidth of the resonator (~

1.2 MHz), demonstrating that linear response may be greatly exceeded by pulses of high

complexity optimized under a sufficiently accurate system model.
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modulations.

The methods described in this chapter should find application in a broad range

of fields. For example, advances in inductive imaging techniques have allowed for

sub-micron resolution, pushing the limits of sensitivity using conventional resonators

[205, 183, 196]. These techniques may also find application in hybrid quantum systems

that aim to use spin ensembles as memory elements for microwave photons [219, 117].
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Chapter 9

Conclusions and Outlook

We have demonstrated a number of techniques for control in open quantum systems,

with emphasis on decoupling an environment to robustly store a qubit, developing

control for spin-actuator multinode quantum information processing, obtaining high-

fidelity control with limited resonator bandwidth, and formalizing notions of gate

design. The technique for efficient information transfer between nodes put forth in

Chapter 4 permits a universal set of gates to be performed across neighboring nodes

with limited sensitivity to actuator decoherence. A particularly powerful operation

enabled by this new protocol is the swapping of the complete nuclear spin processor

states between nodes in parallel. In Chapter 5 we discussed the practical design of

robust quantum gates and demonstrated that requiring control pulses to strongly

modulate the environment leads to quantum gates that are robust to small unknown

variations in the environment. Strong modulation also imposes composability of

gates, ensuring any gate-dependent errors do not accumulate over the course of a

computation.

The dynamical noise suppression techniques presented in Chapters 6 and 7 apply

broadly to protecting the coherence of an arbitrary qubit. We demonstrated how

optimal control theory can be used to optimize refocusing pulses for the CPMG

sequence insensitive to variations in the applied control field and quanttizing field

amplitudes. The enhanced robustness of the sequence expands its range of application

in realistic control scenarios, and was shown to perform as expected in experiments.
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We also introduced the concept of representing pulse errors in decoupling sequences -

such as the CPMG and XY sequences - as a Pauli channel. This compact description

enables the use of concepts from quantum information theory, such as noise twirling

and logical subspace encodings, to enhance the functionality of the sequences by

allowing them to simultaneously decouple an environment while treating all input

states symmetrically.

Our novel method for high-fidelity control and ringdown suppression in high-Q

resonators, developed and experimentally verified in Chapter 8, specifically enables

a new design for a moderate-scale multinode quantum information processor based

on solid-state electron-nuclear spin systems. The ability to accurately control a spin

system with limited resonator bandwidth allows the use of high-Q superconducting

resonators optimized for planar samples [16, 138], providing both a method for in-

ductive readout of a small number of spins and the possibility of efficient entropy

removal, without sacrificing the ability to implement a universal set of high-fidelity

quantum gates. The small bandwidth of a high-Q resonator allows sideband cooling

techniques to be used to quickly reset the electronic spins to a pure state [157, 209], a

process important for performing efficient error correction. As the resonator directly

couples to every actuator spin in the processor, entropy may be removed in parallel

from all regions of the processor at once, a unique advantage to quantum information

processing with spins coupled to high-Q cavities.

A spin-based platform for multinode quantum information processing may be ob-

tained by making organic molecules with a localized free-radical electron spin into

single-crystal molecular monolayers - using either a Langmuir-Blodgett process [151],

or by self-assembly [139, 73]. Each node consists of a single molecule composed of

an electron spin coupled via an anisotropic hyperfine interaction to a small number

of nuclear spins. A particular advantage of having a purely two-dimensional array

of identical processing nodes is the natural mapping to high-threshold planar quan-

tum error correction codes (see Section 1.2). For qubit measurement, the resonator

quality factors currently achieved, 0(103), limit inductive sensitivity to roughly 106

electron spins, requiring initial designs to be composed of an ensemble of identical
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Figure 9-1: Schematic diagram of possible processor layout and addressing scheme. Each

small blue square region denotes a node of the processor, containing a single molecule with

a single electron spin coupled to ten nuclear spins - a candidate molecule is perchlorot-
riphenylmethyl (PTM) [7]. The black square regions denote a plaquette that is identically

repeated about 106 times to allow inductive ensemble measurements. Four of the nuclear
spins are used as classical bits to spatially label the nodes within each plaquette. The re-

maining six nuclear spins may be used as coherent processing qubits, leading to a total of

96 qubits in the processor.

plaquettes, each containing around 20 nodes (Figure 9-1). Quantum error correction

may still be performed using ensemble measurements and coherent correction gates,

but access to projective measurement of single nodes may be necessary to increase the

efficiency and potential scalability of future designs. Possible projective measurement

schemes include optical detection using Nitrogen-vacancy defect centers in diamond

nanopillars [74, 137], electrical detection [153] or mechanical detection [172].

Access to a robust spin-based multinode quantum information processor contain-

ing around 100 qubits would provide a valuable tool for concretely testing and bench-

marking quantum control and error correction in a setting unavailable to classical
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simulation, easing the development of future large-scale devices. Potential challenges

for engineering the described device include integrating superconducting electronics

and pulsed gradient coils with low-temperature molecular monolayer spin samples,

further investigation of control efficiencies in the presence of bandwidth limitations,

identification and evaluation of various free-radical samples, and development of quan-

tum error correction protocols specifically optimized for actuator-based nodes with

multiple qubits.
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Appendix A

Derivation of Gradients for

Reactive Controls

In this appendix we derive in detail the gradients used to optimize pulses with optimal

control theory in the presence of resonator distortions of the ideal waveform. We begin

with a set of undistorted controls, {uj}, where j = 1, ..., N and resample to obtain

a set of undistorted controls {jm}, where m = 1, ... , M and M = nN + n, for n,

samples per N control periods and n, values of zero appended to the waveform to

account for pulse ringdown. For clarity, we assume only one control Hamiltonian

(k = 1). The distorted controls, {"'}, are then given by the discrete convolution of

the undistorted controls with the resonator impulse response function:

Fi"= h"t-'+i. (A.1)
1<m

The average gate fidelity may then be written as

<b = U|UM 1 ... l) K J.MIU), (A.2)
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where the mth propagator is calculated from the distorted controls as

Ur A (Hd+fmH1)Um =e-i(n"'1

= e -j(H+E<,:m hm +16"H1) 
(A.3)

We are interested in calculating the gradient of the fidelity with respect to a pertur-

bation of the undistorted controls {ui}, given by the usual product and chain rules

of derivation as

J-CD U\|U-- .- U 1 M|Ud +
m/ (A.4)

(UdIUMT,.U U.. K u ...UMIU+

By defining a forward propagator, Xm = Um...U1, a backward propagator, PM =

Ul1...#UUd, and noting that only propagators with m > (j - 1)n, will be modified

by a change in the jth control period, we may simplify this expression to

zZ " 6N
6u E (PM|Xm)6u Q XM-1|PM +

m>/-)n" 
(A.5)

P |0 X_1 (XmIPm).

Due to resampling the control period, we define a top-hat function, E(j, n,), to account

for the perturbation being constant during the entire jth control period:

E(j, n,) = 1 for (j - 1)ns < m < jn, + 1,(A.6)

E(j, n,) = 0 otherwise. (A.7)

The derivative 6Um/U' may then be calculated by definition as

JUm = l mQmU m + E(j, n.)Suj) - Um(gm)=-lim . (A.8)ou uovi-+0 ou'
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We apply a small perturbation to the jth control, un -* u' + ui and determine the

resulting m'h propagator:

Um(i7 + E(j, n,)u)

-iA [Hd+( "+Elm h"m-L+1E(j,n.)6uj)Hi]

(A.9)

Assuming At to be small, we may approximate Hd and H1 as commuting, allowing

us to keep only the first order term of a BCH expansion of the perturbed propagator

Um(i"'+ E(j, ns)u 3 ) =(A.1)

Umle<Z1 h-+=(j,n 8 )SuiHlUm(v~")e-i- Enm. '-+23ns'1

If we now assume the perturbation 6u' to also be small, we may make a first order

series approximation of the exponential, to give

Um(i"'+ E (j, n.)U3 ) =

At ~ M+1 j +OA2
Um(ii")(I - i'-H 1 Um h"-l+1h(j, n,).u3 + O(At2 )

na Im

We may now plug this expression back into (A.8) to obtain

(A.11)

6Um At
j U= -i H1m

6& n
(A.12)Shm-+1(j, n,),

l<m

which, when plugged into (A.5) gives

M(j) (A.13)
m>(j-1)

where ("'(j) is the convolution of the top-hat function with the resonator impulse

response function:

( m(j) = "hm'-+1(j, n).

l<m
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This function may be interpreted as a weighting of the change of the fidelity due to a

small change Hi"m of the pulse parameter at the mth evolution time step induced by

the perturbation ouj:

= -2Re Pmli H1Xm (Xm (A.15)

Note that when the controls are undistorted, the gradient weighting function is equiv-

alent to the top-hat function, giving

6u D m 3n, (A .16)
m>(j-1)n+1

which for short time steps and small perturbations, reduces to the undistorted gra-

dient derived in [105]:

= -2Re [(PjliAtH 1 X) (Xj|P)]. (A.17)

In the special case where two control Hamiltonians, H1 and H 2 , are in quadrature

with one another - for example, amplitude and phase modulation of a single control

field in magnetic resonance - the gradients must be modified to reflect the interde-

pendence of the Hamiltonians. The resonator impulse response function, h, and the

control signals, u and v, must be considered as complex functions, with the real part

associated with H1 and the imaginary part associated with H2. The gradients for the

real and imaginary parts of the controls are then:

D= Re[("(j)] + Im["(j)][ (A. 18)6Re[u S ] 6Re[i" ( Im[ j)]M m 6Re[gm]m>(j-1)n.

=I[j Re[(ij)] -Im[(')]6e-P (A. 19)
m>(j-1)n.

where

6RD] =-2Re Pmzi H1Xm (Xm|Pm)J, (A.20)
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I_ m-= -2Re Pmli H2Xm (XmIPm)]. (A.21)
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