250 research outputs found

    Quantum data gathering

    Get PDF
    Measurement of a quantum system – the process by which an observer gathers information about it – provides a link between the quantum and classical worlds. The nature of this process is the central issue for attempts to reconcile quantum and classical descriptions of physical processes. Here, we show that the conventional paradigm of quantum measurement is directly responsible for a well-known disparity between the resources required to extract information from quantum and classical systems. We introduce a simple form of quantum data gathering, “coherent measurement”, that eliminates this disparity and restores a pleasing symmetry between classical and quantum statistical inference. To illustrate the power of quantum data gathering, we demonstrate that coherent measurements are optimal and strictly more powerful than conventional one-at-a-time measurements for the task of discriminating quantum states, including certain entangled many-body states (e.g., matrix product states)

    Unification and limitations of error suppression techniques for adiabatic quantum computing

    Full text link
    While adiabatic quantum computation (AQC) possesses some intrinsic robustness to noise, it is expected that a form of error control will be necessary for large scale computations. Error control ideas developed for circuit-model quantum computation do not transfer easily to the AQC model and to date there have been two main proposals to suppress errors during an AQC implementation: energy gap protection and dynamical decoupling. Here we show that these two methods are fundamentally related and may be analyzed within the same formalism. We analyze the effectiveness of such error suppression techniques and identify critical constraints on the performance of error suppression in AQC, suggesting that error suppression by itself is insufficient for fault-tolerant, large-scale AQC and that a form of error correction is needed. This manuscript has been superseded by the articles, "Error suppression and error correction in adiabatic quantum computation I: techniques and challenges," arXiv:1307.5893, and "Error suppression and error correction in adiabatic quantum computation II: non-equilibrium dynamics," arXiv:1307.5892.Comment: 9 pages. Update replaces "Equivalence" with "Unification." This manuscript has been superseded by the two-article series: arXiv:1307.5892 and arXiv:1307.589
    • …
    corecore