376 research outputs found
Recommended from our members
Translational outcomes in a full gene deletion of ubiquitin protein ligase E3A rat model of Angelman syndrome.
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by developmental delay, impaired communication, motor deficits and ataxia, intellectual disabilities, microcephaly, and seizures. The genetic cause of AS is the loss of expression of UBE3A (ubiquitin protein ligase E6-AP) in the brain, typically due to a deletion of the maternal 15q11-q13 region. Previous studies have been performed using a mouse model with a deletion of a single exon of Ube3a. Since three splice variants of Ube3a exist, this has led to a lack of consistent reports and the theory that perhaps not all mouse studies were assessing the effects of an absence of all functional UBE3A. Herein, we report the generation and functional characterization of a novel model of Angelman syndrome by deleting the entire Ube3a gene in the rat. We validated that this resulted in the first comprehensive gene deletion rodent model. Ultrasonic vocalizations from newborn Ube3am-/p+ were reduced in the maternal inherited deletion group with no observable change in the Ube3am+/p- paternal transmission cohort. We also discovered Ube3am-/p+ exhibited delayed reflex development, motor deficits in rearing and fine motor skills, aberrant social communication, and impaired touchscreen learning and memory in young adults. These behavioral deficits were large in effect size and easily apparent in the larger rodent species. Low social communication was detected using a playback task that is unique to rats. Structural imaging illustrated decreased brain volume in Ube3am-/p+ and a variety of intriguing neuroanatomical phenotypes while Ube3am+/p- did not exhibit altered neuroanatomy. Our report identifies, for the first time, unique AS relevant functional phenotypes and anatomical markers as preclinical outcomes to test various strategies for gene and molecular therapies in AS
Voltage-programmable liquid optical interface
Recently, there has been intense interest in photonic devices based on microfluidics, including displays and refractive tunable microlenses and optical beamsteerers, that work using the principle of electrowetting. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at micrometre-scale pitches or more complex non-sinusoidal profiles with higher Fourier components at longer pitches. This opens up the possibility of developing rapidly responsive voltage-programmable, polarization-insensitive transmission and reflection diffraction devices and arbitrary surface profile optical devices
Nucleotide sequence and genome organization of Dweet mottle virus and its relationship to members of the family Betaflexiviridae
The nucleotide sequence of Dweet mottle virus (DMV) was determined and compared to sequences of members of the families Alphaflexiviridae and Betaflexiviridae. The DMV genome has 8,747 nucleotides (nt) excluding the 3′ poly-(A) tail. DMV genomic RNA contains three putative open reading frames (ORFs) and untranslated regions of 73 nt at the 5′ and 541 nt at 3′ termini. ORF1 potentially encoding a 227.48-kDa polyprotein, which has methyltransferase, oxygenase, endopeptidase, helicase, and RNA-dependent RNA polymerase (RdRP) domains. ORF2 encodes a movement protein of 40.25 kDa, while ORF3 encodes a coat protein of 40.69 kDa. Protein database searches showed 98–99% matches of DMV ORFs with citrus leaf blotch virus (CLBV) sequences. Phylogenetic analysis based on the RdRP core domain revealed that DMV is closely related to CLBV as a member of the genus Citrivirus. DMV did not satisfy the molecular criteria for demarcation of an independent species within the genus Citrivirus, family Betaflexiviridae, and hence, DMV can be considered a CLBV isolate
A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry
We present here a review of the fundamental topics of Hartree-Fock theory in
Quantum Chemistry. From the molecular Hamiltonian, using and discussing the
Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock
equations for the electronic problem. Special emphasis is placed in the most
relevant mathematical aspects of the theoretical derivation of the final
equations, as well as in the results regarding the existence and uniqueness of
their solutions. All Hartree-Fock versions with different spin restrictions are
systematically extracted from the general case, thus providing a unifying
framework. Then, the discretization of the one-electron orbitals space is
reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition
of the basic underlying concepts related to the construction and selection of
Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we
close the review with a section in which the most relevant modern developments
(specially those related to the design of linear-scaling methods) are commented
and linked to the issues discussed. The whole work is intentionally
introductory and rather self-contained, so that it may be useful for non
experts that aim to use quantum chemical methods in interdisciplinary
applications. Moreover, much material that is found scattered in the literature
has been put together here to facilitate comprehension and to serve as a handy
reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and
subeqn package
Joint Metabonomic and Instrumental Analysis for the Classification of Migraine Patients with 677-MTHFR Mutations
Migraine is a neurological disorder that correlates with an increased risk of cerebrovascular lesions. Genetic mutations of the MTHFR gene are correlated to migraine and to the increased risk of artery pathologies. Also, migraine patients show altered hematochemical parameters, linked to an impaired platelet aggregation mechanism. Hence, the vascular assessment of migraineurs is of primary importance
Obstructive Sleep Apnea Alters Sleep Stage Transition Dynamics
Enhanced characterization of sleep architecture, compared with routine polysomnographic metrics such as stage percentages and sleep efficiency, may improve the predictive phenotyping of fragmented sleep. One approach involves using stage transition analysis to characterize sleep continuity.We analyzed hypnograms from Sleep Heart Health Study (SHHS) participants using the following stage designations: wake after sleep onset (WASO), non-rapid eye movement (NREM) sleep, and REM sleep. We show that individual patient hypnograms contain insufficient number of bouts to adequately describe the transition kinetics, necessitating pooling of data. We compared a control group of individuals free of medications, obstructive sleep apnea (OSA), medical co-morbidities, or sleepiness (n = 374) with mild (n = 496) or severe OSA (n = 338). WASO, REM sleep, and NREM sleep bout durations exhibited multi-exponential temporal dynamics. The presence of OSA accelerated the "decay" rate of NREM and REM sleep bouts, resulting in instability manifesting as shorter bouts and increased number of stage transitions. For WASO bouts, previously attributed to a power law process, a multi-exponential decay described the data well. Simulations demonstrated that a multi-exponential process can mimic a power law distribution.OSA alters sleep architecture dynamics by decreasing the temporal stability of NREM and REM sleep bouts. Multi-exponential fitting is superior to routine mono-exponential fitting, and may thus provide improved predictive metrics of sleep continuity. However, because a single night of sleep contains insufficient transitions to characterize these dynamics, extended monitoring of sleep, probably at home, would be necessary for individualized clinical application
Pilot study evaluating the effects of an intervention to enhance culturally appropriate hypertension education among healthcare providers in a primary care setting
Background: To improve hypertension care for ethnic minority patients of African descent in the Netherlands, we developed a provider intervention to facilitate the delivery of culturally appropriate hypertension education. This pilot study evaluates how the intervention affected the attitudes and perceived competence of hypertension care providers with regard to culturally appropriate care.Methods: Pre- and post-intervention questionnaires were used to measure the attitudes, experienced barriers, and self-reported behaviour of healthcare providers with regard to culturally appropriate cardiovascular and general care at three intervention sites (N = 47) and three control sites (N = 35).Results: Forty-nine participants (60%) completed questionnaires at baseline (T0) and nine months later (T1). At T1, healthcare providers who received the intervention found it more important to consider the patient's culture when delivering care than healthcare providers who did not receive the intervention (p = 0.030). The intervention did not influence ex
Prognostic value of protein tyrosine kinase 6 (PTK6) for long-term survival of breast cancer patients
The cytoplasmic tyrosine kinase PTK6 (BRK) shows elevated expression in approximately two-thirds of primary breast tumours, and is implicated in EGF receptor-dependent signalling and epithelial tumorigenesis. Using immunohistochemistry, we performed a retrospective study on 426 archival breast cancer samples from patients with long-term follow-up and compared the protein expression levels of PTK6, the HER receptors, Sam68 (a substrate of PTK6), and signalling proteins including MAP kinase (MAPK), phosphorylated MAPK (P-MAPK), and PTEN. We show that PTK6 expression is of significant prognostic value in the outcome of breast carcinomas. In multivariate analysis, the disease-free survival of patients of ⩾240 months was directly associated with the protein expression level of PTK6 (P⩽0.001), but was also inversely associated with nodal status (P⩽0.001) and tumour size (P⩽0.01). PTK6 expression in tumour tissue significantly correlated (P⩽0.05) with the expression of PTEN, MAPK, P-MAPK, and Sam68. To investigate whether these correlations may be due to molecular interactions between PTK6 and these proteins, we used protein extracts from the T47D cell line for immunoprecipitation and western blot analysis. By this, interactions could be demonstrated between PTK6 and MAPK, P-MAPK, HER2/neu, HER3, HER4, PTEN, and Sam68. On the basis of these results, we suggest that PTK6 may serve as a future target for the development of novel treatments in breast cancer
Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice
Earlier diagnosis and treatment of Alzheimer's disease would greatly benefit from the identification of biomarkers at the prodromal stage. Using a prominent animal model of aspects of the disease, we here show using clinically relevant methodologies that very young, pre-pathological PDAPP mice, which overexpress mutant human amyloid precursor protein in the brain, exhibit two cryptic deficits that are normally undetected using standard methods of assessment. Despite learning a spatial memory task normally and displaying normal brain glucose uptake, they display faster forgetting after a long delay following performance to a criterion, together with a strong impairment of brain glucose uptake at the time of attempted memory retrieval. Preliminary observations suggest that these deficits, likely caused by an impairment in systems consolidation, could be rescued by immunotherapy with an anti-β-amyloid antibody. Our data suggest a biomarker strategy for the early detection of β-amyloid-related abnormalities
- …