49 research outputs found
Bio-banding in junior soccer players: a pilot study.
Objective: Bio-banding (BB) has been introduced to account for varying maturity and to improve the talent development of junior soccer players. To date, research that investigated the physiological and technical effects of BB is sparse. Therefore, the aim of the study was to compare effects of BB with CA on selected technical and tactical parameters in U13 and U14 soccer players.
Results: BB significantly increased the number of duels (p = 0.024) and set pieces (p = 0.025) compared to chronological age. The mean time of ball possession per action was reduced (p = 0.021) and the rate of successful passes was lower with BB (p = 0.001). Meanwhile, the total number of passes was unaffected (p = 0.796), and there was a trend towards a lower difference in ball possession between BB teams (p = 0.058). In addition, BB reduced the distances covered while jogging (p = 0.001), running (p = 0.038) and high-speed running (p = 0.035). With BB, an increased number of duels, unsuccessful passes and set pieces resulted in a quicker change of match play situations between teams. While physical demand was reduced, BB seems to result in a more technically and tactically challenging game. Benefits in long-term player development, however, require further investigation
Sprinting to the top: comparing quality of distance variety and specialization between swimmers and runners
ObjectivesTo compare performance progression and variety in race distances of comparable lengths (timewise) between pool swimming and track running. Quality of within-sport variety was determined as the performance differences between individual athletes' main and secondary race distances across (top-) elite and (highly-) trained swimmers and runners.MethodsA total of 3,827,947 race times were used to calculate performance points (race times relative to the world record) for freestyle swimmers (n = 12,588 males and n = 7,561 females) and track runners (n = 9,230 males and n = 5,841 females). Athletes were ranked based on their personal best at peak performance age, then annual best times were retrospectively traced throughout adolescence.ResultsPerformance of world-class swimmers differentiates at an earlier age from their lower ranked peers (15–16 vs. 17–20 year age categories, P < 0.05), but also plateaus earlier towards senior age compared to runners (19–20 vs. 23 + year age category, P < 0.05), respectively. Performance development of swimmers shows a logarithmic pattern, while runners develop linearly. While swimmers compete in more secondary race distances (larger within-sport variety), runners specialize in either sprint, middle- or long-distance early in their career and compete in only 2, 4 or 3 other race distances, respectively. In both sports, sprinters specialize the most (P < 0.05). Distance-variety of middle-distance swimmers covers more longer rather than sprint race distances. Therefore, at peak performance age, (top-) elite female 200 m swimmers show significantly slower sprint performances, i.e., 50 m (P < 0.001) and 100 m (P < 0.001), but not long-distance performances, i.e., 800 m (P = 0.99) and 1,500 m (P = 0.99). In contrast, (top-) elite female 800 m middle-distance runners show significantly slower performances in all their secondary race distances (P < 0.001). (Top-) elite female athletes specialize more than (highly-) trained athletes in both sports (P < 0.05).ConclusionsThe comparison to track running and lower ranked swimmers, the early performance plateau towards senior age, and the maintenance of a large within-sport distance variety indicates that (top-) elite sprint swimmers benefit from greater within-sport specialization
Why age categories in youth sport should be eliminated: Insights from performance development of youth female long jumpers
Long-term sports participation and performance development are major issues in popular sports and talent development programs. This study aimed to provide longitudinal trends in youth female long jump performance development, participation, and relative age effects (RAEs), as longitudinal data for female athletes are missing. 51′894 season’s best results of female long jump athletes (n = 16′189) were acquired from the Swiss Athletics online database and analyzed within a range of 6–22 years of age. To examine longitudinal performance development and RAEs, data from athletes who participated in at least three seasons were selected (n = 41′253) and analyzed. Performance development was analyzed using age groups (AGs) and exact chronological age (CA) at competition. Differences between performances of birth quarters were analyzed using 83% confidence intervals (CIs) and smallest worthwhile change. Odds ratios (ORs) with 95% CI were used to quantify RAEs. With the traditional classification into age groups (AG), performances of athletes born between January and March (Q1) were significantly better than those born between October and December (Q4) from U8 to U17. Using exact CA resulted in similar performances in Q1 and Q4 until the U20 age category. The peak of participation was reached in the U12 category, and then decreased until the U23 category with a substantial drop at U17. Significant RAEs were observed from U8 to U19 and at U22. RAEs continuously decreased from U8 (large effect) to U14 (small effect). The present results show that differences in performance arise from the comparison of athletes in AGs. Thus, going beyond AGs and using exact CA, Q4 athletes could benefit from a realistic performance comparison, which promotes fair performance evaluation, un-biased talent development, realistic feedback, and long-term participation
Performance Development of European Swimmers Across the Olympic Cycle.
The aims of the study were to (1) quantify the performance development of race times and key performance indicators of European swimmers across the last Olympic cycle (from 2016 to 2021) and (2) provide reference values for long-course swimming pool events for both sexes from 50 m to 1,500 m including butterfly, backstroke, breaststroke, freestyle, and individual medley. Individual events from the 2016 and 2021 European swimming championships were included. Specifically, 246 men (age: 24.2 ± 3.4 years, FINA points: 890 ± 40) and 256 women races (age: 24.2 ± 4, FINA points: 879 ± 38) of the finalists were recorded and key performance indicators and split times analyzed. Performance differences in finalists of the 2016 and 2021 European championships were determined by an independent t-test and Cohen's d effect size. Reference values were retrieved from 2021 European championship finalists and are provided for all key performance indicators. Race times improved significantly (P 1) in 14 (men) and 6 (women) out of 16 events. Improvements were primarily evident in 100 m and 200 m events for males, as well as BR and sprint events for female swimmers. While start times improved in 15 (men) and 14 (women) events, turn times remained inconclusive in both sexes. Generally, breakout distances increased. Clean swimming velocities were faster in 12 (men) and 5 (women) events. In particular, for alternating swimming strokes, i.e., backstroke and freestyle, effect sizes indicated improved swimming efficiency with an inverse relationship between reduced stroke rate and increased distance per stroke. Coaches and performance analysts may use the present reference values as comparative data for race analyses and to specifically prepare swimmers for the various race sections. Data on the performance development should be used to analyze swimmers' potential and set goals for the various events and the next Olympic cycle
Turn Performance Variation in European Elite Short-Course Swimmers.
Turn performances are important success factors for short-course races, and more consistent turn times may distinguish between higher and lower-ranked swimmers. Therefore, this study aimed to determine coefficients of variation (CV) and performance progressions (∆%) of turn performances. The eight finalists and eight fastest swimmers from the heats that did not qualify for the semi-finals, i.e., from 17th to 24th place, of the 100, 200, 400, and 800 (females only)/1500 m (males only) freestyle events at the 2019 European Short Course Championships were included, resulting in a total of 64 male (finalists: age: 22.3 ± 2.6, FINA points: 914 ± 31 vs. heats: age: 21.5 ± 3.1, FINA points: 838 ± 74.9) and 64 female swimmers (finalists: age: 22.9 ± 4.8, FINA points: 904 ± 24.5 vs. heats: age: 20.1 ± 3.6, FINA points: 800 ± 48). A linear mixed model was used to compare inter- and intra-individual performance variation. Interactions between CVs, ∆%, and mean values were analyzed using a two-way analysis of variance (ANOVA). The results showed impaired turn performances as the races progressed. Finalists showed faster turn section times than the eight fastest non-qualified swimmers from the heats (p < 0.001). Additionally, turn section times were faster for short-, i.e., 100 and 200 m, than middle- and long-distance races, i.e., 400 to 1500 m races (p < 0.001). Regarding variation in turn performance, finalists showed lower CVs and ∆% for all turn section times (0.74% and 1.49%) compared to non-qualified swimmers (0.91% and 1.90%, respectively). Similarly, long-distance events, i.e., 800/1500 m, showed lower mean CVs and higher mean ∆% (0.69% and 1.93%) than short-distance, i.e., 100 m events (0.93% and 1.39%, respectively). Regarding turn sections, the largest CV and ∆% were found 5 m before wall contact (0.70% and 1.45%) with lower CV and more consistent turn section times 5 m after wall contact (0.42% and 0.54%). Non-qualified swimmers should aim to match the superior turn performances and faster times of finalists in all turn sections. Both finalists and non-qualified swimmers should pay particular attention to maintaining high velocities when approaching the wall as the race progresses
Key performance indicators and leg positioning for the kick-start in competitive swimmers
The aim of the study was to (1) assess the test-retest reliability of a novel performance analysis system for swimming (KiSwim) including an instrumented starting block and optical motion capture system, (2) identify key performance indicators (KPI) for the kick-start, (3) determine the most beneficial position of the strong leg and (4) investigate the effect of acute reversal of leg positioning. During three sessions, kick-starts of 15 competitive swimmers were investigated. Eighteen kinematic and kinetic parameters showed high reliability (ICC>0.75) from which principal component analysis identified seven KPI (i.e., time to 15 m, time on-block, depth at 7.5 m, horizontal take-off velocity, horizontal impulse back plate, horizontal peak force back plate and vertical peak force front plate). For the preferred start position, the back plate showed a higher horizontal peak force (0.71 vs. 0.96 x body mass; p < 0.001) and impulse (0.191 vs. 0.28Ns/BW; p < 0.001) compared to front plate. Acute reversal of the leg position reduced performance (i.e., increased time to 15 m and reduced horizontal take-off velocity). However, plate-specific kinetic analysis revealed a larger horizontal peak force (p < 0.001) and impulse (p < 0.001) for the back compared to the front plate in any start position investigated. Therefore, swimmers are encouraged to position the strong leg in the back
Sprinting to the top: comparing quality of distance variety and specialization between swimmers and runners.
OBJECTIVES
To compare performance progression and variety in race distances of comparable lengths (timewise) between pool swimming and track running. Quality of within-sport variety was determined as the performance differences between individual athletes' main and secondary race distances across (top-) elite and (highly-) trained swimmers and runners.
METHODS
A total of 3,827,947 race times were used to calculate performance points (race times relative to the world record) for freestyle swimmers (n = 12,588 males and n = 7,561 females) and track runners (n = 9,230 males and n = 5,841 females). Athletes were ranked based on their personal best at peak performance age, then annual best times were retrospectively traced throughout adolescence.
RESULTS
Performance of world-class swimmers differentiates at an earlier age from their lower ranked peers (15-16 vs. 17-20 year age categories, P < 0.05), but also plateaus earlier towards senior age compared to runners (19-20 vs. 23 + year age category, P < 0.05), respectively. Performance development of swimmers shows a logarithmic pattern, while runners develop linearly. While swimmers compete in more secondary race distances (larger within-sport variety), runners specialize in either sprint, middle- or long-distance early in their career and compete in only 2, 4 or 3 other race distances, respectively. In both sports, sprinters specialize the most (P < 0.05). Distance-variety of middle-distance swimmers covers more longer rather than sprint race distances. Therefore, at peak performance age, (top-) elite female 200 m swimmers show significantly slower sprint performances, i.e., 50 m (P < 0.001) and 100 m (P < 0.001), but not long-distance performances, i.e., 800 m (P = 0.99) and 1,500 m (P = 0.99). In contrast, (top-) elite female 800 m middle-distance runners show significantly slower performances in all their secondary race distances (P < 0.001). (Top-) elite female athletes specialize more than (highly-) trained athletes in both sports (P < 0.05).
CONCLUSIONS
The comparison to track running and lower ranked swimmers, the early performance plateau towards senior age, and the maintenance of a large within-sport distance variety indicates that (top-) elite sprint swimmers benefit from greater within-sport specialization
Short-course performance variation across all race sections: How 100 and 200 m elite male swimmers progress between rounds
The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fspor.2023.
1146711/full#supplementary-materialIntroductionTo investigate performance variation in all race sections, i.e., start, clean swimming, and turns, of elite short-course races for all swimming strokes and to determine the effect of performance variation on race results. MethodsComparing finalists and non-qualified swimmers, a total of 256 races of male swimmers (n = 128, age: 23.3 +/- 3.1, FINA points: 876 +/- 38) competing in the European short-course swimming championships were analyzed. The coefficient of variation (CV) and relative change in performance (Delta%) were used to compare intra-individual performance progression between rounds and inter-individual differences between performance levels using a linear mixed model. ResultsWhile most performance variables declined during the races (P 0.05), except for breaststroke (P = 0.008; CV = 0.7%; Delta = -0.59%). Start (P = 0.004; Delta = -1.72%) and Split Times (P = 0.009; Delta = -0.61%) only improved in butterfly. From the turn variables, OUT_5 m times improved towards the finals in breaststroke (P = 0.006; Delta = -1.51%) and butterfly (P = 0.016; Delta = -2.19%). No differences were observed for SR and SL, while clean-swimming speed improved between rounds in breaststroke only (P = 0.034; Delta = 0.96%). DiscussionPerformance of finalists progressed between rounds in 100 m but not 200 m races, most probably due to the absence of semi-finals. Progression in 100 m races was mainly attributed to improved Start and Split Times in Lap 1, while turn performances remained unchanged. Within round comparison showed higher performance maintenance in 200 m compared to 100 m events, which showed more pronounced positive pacing. Success of finalists was attributed to their overall higher performance level and superior progression between rounds.Ministry of Science, Innovation and Universities (Spanish Agency of Research)European Regional Development Fund (ERDF)PGC2018-102116-B-100 “SWIM II: Specific Water Innovative Measurements: Applied to the performance
improvement”Spanish Ministry of Education, Culture
and Sport: FPU17/0276
Marine mammal hotspots across the circumpolar Arctic
Aim: Identify hotspots and areas of high species richness for Arctic marine mammals. Location: Circumpolar Arctic. Methods: A total of 2115 biologging devices were deployed on marine mammals from 13 species in the Arctic from 2005 to 2019. Getis-Ord Gi* hotspots were calculated based on the number of individuals in grid cells for each species and for phyloge-netic groups (nine pinnipeds, three cetaceans, all species) and areas with high spe-cies richness were identified for summer (Jun-Nov), winter (Dec-May) and the entire year. Seasonal habitat differences among species’ hotspots were investigated using Principal Component Analysis. Results: Hotspots and areas with high species richness occurred within the Arctic continental-shelf seas and within the marginal ice zone, particularly in the “Arctic gateways” of the north Atlantic and Pacific oceans. Summer hotspots were generally found further north than winter hotspots, but there were exceptions to this pattern, including bowhead whales in the Greenland-Barents Seas and species with coastal distributions in Svalbard, Norway and East Greenland. Areas with high species rich-ness generally overlapped high-density hotspots. Large regional and seasonal dif-ferences in habitat features of hotspots were found among species but also within species from different regions. Gap analysis (discrepancy between hotspots and IUCN ranges) identified species and regions where more research is required. Main conclusions: This study identified important areas (and habitat types) for Arctic marine mammals using available biotelemetry data. The results herein serve as a benchmark to measure future distributional shifts. Expanded monitoring and teleme-try studies are needed on Arctic species to understand the impacts of climate change and concomitant ecosystem changes (synergistic effects of multiple stressors). While efforts should be made to fill knowledge gaps, including regional gaps and more com-plete sex and age coverage, hotspots identified herein can inform management ef-forts to mitigate the impacts of human activities and ecological changes, including creation of protected areas
Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial
Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials.
Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure.
Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen.
Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049