73 research outputs found

    Galaxy Evolution in the last 9 Billion Years

    Get PDF
    Ich benutze HST-Bilder des Projektes GEMS und photometrische Rotverschiebungen von COMBO-17, um die Rolle von blauen elliptischen Galaxien (BSGs) und die Entwicklung von scheiben-dominierten Galaxien seit einer Rotverschiebung von z~1 zu untersuchen. Um meine Galaxienauswahl treffen zu können, habe ich GALFIT und GIM2D, zwei oft angewandte 2-D Modellierungs-Programme, intensiv auf echten und simulierten Daten getestet. Ich zeige, daß GALFIT zuverlässigere Ergebnisse liefert als GIM2D, vor allem durch seine Fähigkeit, benachbarte Objekte gleichzeitig anzupassen. Beide Programme unterschätzen die Fehlerbalken der Parameter dabei stark. Durch automatische Klassifikation sowie durch Klassifikation per Auge, gewinne ich eine Auswahl an BSGs und zeige, daß nur BSGs mit hoher Massendichte in der Lage sind, sich passiv in typische rote elliptische Galaxien zu entwickeln, und daß ca. ~6% der massereichen elliptischen Galaxien blaue Färbung zeigen, in Übereinstimmung mit Vorhersagen aus Zusammenstoß-Raten von Galaxien. Für Scheiben-Galaxien finde ich eine starke Entwicklung der Helligkeit–Größe-Beziehung von Galaxien mit M_V ~10 ist sichtbar im gleichen Zeitraum, konsistent mit einem mittleren Wachstum der Scheiben von Innen nach Außen. Scheiben werden umso größer, je massereicher sie werden

    The evolving relation between star-formation rate and stellar mass in the VIDEO Survey since z=3z=3

    Full text link
    We investigate the star-formation rate (SFR) and stellar mass (MM_*) relation of a star-forming (SF) galaxy sample in the XMM-LSS field to z3.0z\sim 3.0 using the near-infrared data from the VISTA Deep Extragalactic Observations (VIDEO) survey. Combining VIDEO with broad-band photometry, we use the SED fitting algorithm CIGALE to derive SFRs and MM_* and have adapted it to account for the full photometric redshift PDF uncertainty. Applying a SF selection using the D4000 index, we find evidence for strong evolution in the normalisation of the SFR-MM_* relation out to z3z\sim 3 and a roughly constant slope of (SFR Mα\propto M_*^{\alpha}) α=0.69±0.02\alpha=0.69\pm0.02 to z1.7z\sim 1.7. We find this increases close to unity toward z2.65z\sim2.65. Alternatively, if we apply a colour selection, we find a distinct turnover in the SFR-MM_* relation between 0.7z2.00.7\lesssim z\lesssim2.0 at the high mass end, and suggest that this is due to an increased contamination from passive galaxies. We find evolution of the specific SFR (1+z)2.60\propto(1+z)^{2.60} at log(M)\log(M_*)\sim10.5, out to z2.4z\lesssim2.4 with an observed flattening beyond zz\sim 2 with increased stellar mass. Comparing to a range of simulations we find the analytical scaling relation approaches, that invoke an equilibrium model, a good fit to our data, suggesting that a continual smooth accretion regulated by continual outflows may be a key driver in the overall growth of SFGs.Comment: 19 pages, 18 figures, accepted for publication in MNRA

    BUDDI-MaNGA III: The mass-assembly histories of bulges and discs of spiral galaxies

    Full text link
    The many unique properties of galaxies are shaped by physical processes that affect different components of the galaxy - like the bulges and discs - in different ways, and leave characteristic imprints on the light and spectra of these components. Disentangling their spectra can reveal vital clues that can be traced back in time to understand how galaxies, and their components, form and evolve throughout their lifetimes. With BUDDI, we have decomposed the IFU datacubes in SDSS-MaNGA DR17 into a S\'ersic bulge component and an exponential disc component and extracted their clean bulge and disc spectra. BUDDI-MaNGA is the first and largest statistical sample of such decomposed spectra of 1452 galaxies covering morphologies from ellipticals to late-type spirals. We derived stellar masses of the individual components with SED fitting using BAGPIPES and estimated their mean mass-weighted stellar metallicities and stellar ages using pPXF. With this information in place, we reconstructed the mass assembly histories of the bulges and discs of the 968 spiral galaxies (Sa-Sm Types) in this sample to look for systematic trends with respect to stellar mass and morphology. Our results show a clear downsizing effect especially in the bulges, with more massive components assembling earlier and faster than the less massive ones. Additionally, on comparing the stellar populations of the bulges and discs in these galaxies, we find that a majority of the bulges host more metal-rich and older stars than their disc counterparts. Nevertheless, we also find that there exists a non-negligible fraction of the spiral galaxy population in our sample with bulges that are younger and more metal-rich than their discs. We interpret these results, taking into account how their formation histories and current stellar populations depend on stellar mass and morphology.Comment: 30 pages, 17 figures, accepted for publication in A&A; typos correcte

    A consistent measure of the merger histories of massive galaxies using close-pair statistics I:Major mergers at z <3.5

    Get PDF
    We use a large sample of 350,000\sim 350,000 galaxies constructed by combining the UKIDSS UDS, VIDEO/CFHT-LS, UltraVISTA/COSMOS and GAMA survey regions to probe the major merging histories of massive galaxies (>1010 M>10^{10}\ \mathrm{M}_\odot) at 0.005<z<3.50.005 < z < 3.5. We use a method adapted from that presented in Lopez-Sanjuan et al. (2014) using the full photometric redshift probability distributions, to measure pair fractions\textit{fractions} of flux-limited, stellar mass selected galaxy samples using close-pair statistics. The pair fraction is found to weakly evolve as (1+z)0.8\propto (1+z)^{0.8} with no dependence on stellar mass. We subsequently derive major merger rates\textit{rates} for galaxies at >1010 M> 10^{10}\ \mathrm{M}_\odot and at a constant number density of n>104n > 10^{-4} Mpc3^{-3}, and find rates a factor of 2-3 smaller than previous works, although this depends strongly on the assumed merger timescale and likelihood of a close-pair merging. Galaxies undergo approximately 0.5 major mergers at z<3.5z < 3.5, accruing an additional 1-4 ×1010 M\times 10^{10}\ \mathrm{M}_\odot in the process. Major merger accretion rate densities of 2×104\sim 2 \times 10^{-4} M\mathrm{M}_\odot yr1^{-1} Mpc3^{-3} are found for number density selected samples, indicating that direct progenitors of local massive (>1011M>10^{11}\mathrm{M}_\odot) galaxies have experienced a steady supply of stellar mass via major mergers throughout their evolution. While pair fractions are found to agree with those predicted by the Henriques et al. (2014) semi-analytic model, the Illustris hydrodynamical simulation fails to quantitatively reproduce derived merger rates. Furthermore, we find major mergers become a comparable source of stellar mass growth compared to star-formation at z<1z < 1, but is 10-100 times smaller than the SFR density at higher redshifts.Comment: 26 pages, 18 figures, accepted to MNRA

    Galapagos-2/Galfitm/Gama – Multi-wavelength measurement of galaxy structure: Separating the properties of spheroid and disk components in modern surveys

    Get PDF
    Aims. We present the capabilities of GALAPAGOS-2 and GALFITM in the context of fitting two-component profiles – bulge–disk decompositions – to galaxies, with the ultimate goal of providing complete multi-band, multi-component fitting of large samples of galaxies in future surveys. We also release both the code and the fit results to 234 239 objects from the DR3 of the GAMA survey, a sample significantly deeper than in previous works. Methods. We use stringent tests on both simulated and real data, as well as comparison to public catalogues to evaluate the advantages of using multi-band over single-band data. Results. We show that multi-band fitting using GALFITM provides significant advantages when trying to decompose galaxies into their individual constituents, as more data are being used, by effectively being able to use the colour information buried in the individual exposures to its advantage. Using simulated data, we find that multi-band fitting significantly reduces deviations from the real parameter values, allows component sizes and Sérsic indices to be recovered more accurately, and – by design – constrains the band-to-band variations of these parameters to more physical values. On both simulated and real data, we confirm that the spectral energy distributions (SEDs) of the two main components can be recovered to fainter magnitudes compared to using single-band fitting, which tends to recover ‘disks’ and ‘bulges’ with – on average – identical SEDs when the galaxies become too faint, instead of the different SEDs they truly have. By comparing our results to those provided by other fitting codes, we confirm that they agree in general, but measurement errors can be significantly reduced by using the multi-band tools developed by the MEGAMORPH project. Conclusions. We conclude that the multi-band fitting employed by GALAPAGOS-2 and GALFITM significantly improves the accuracy of structural galaxy parameters and enables much larger samples to be be used in a scientific analysis

    The metal-poor dwarf irregular galaxy candidate next to Mrk 1172

    Get PDF
    In this work we characterise the properties of the object SDSS J020536.84-081424.7, an extended nebular region with projected extension of 14×1414 \times 14 kpc2^{2} in the line of sight of the ETG Mrk 1172, using unprecedented spectroscopic data from MUSE. We perform a spatially resolved stellar population synthesis and estimate the stellar mass for both Mrk 1172 (1×1011M1 \times 10^{11} M_{\odot}) and our object of study (3×109M3 \times 10^{9} M_{\odot}). While the stellar content of Mrk 1172 is dominated by an old (10\sim 10 Gyr) stellar population, the extended nebular emission has its light dominated by young to intermediate age populations (from 100\sim 100 Myr to 1\sim 1 Gyr) and presents strong emission lines such as: Hβ{\beta}, [O III] λλ{\lambda}{\lambda}4959,5007, Hα{\alpha}, [N II] λλ{\lambda}{\lambda}6549,6585 and [S II] λλ{\lambda}{\lambda}6717,6732. Using these emission lines we find that it is metal-poor (with ZZ \sim 1/3 ZZ_{\odot}, comparable to the LMC) and is actively forming stars (0.700.70 M_{\odot} yr1^{-1}), especially in a few bright clumpy knots that are readily visible in Hα{\alpha}. The object has an ionised gas mass 3.8×105\geq 3.8 \times 10^{5} M_{\odot}. Moreover, the motion of the gas is well described by a gas in circular orbit in the plane of a disk and is being affected by interaction with Mrk 1172. We conclude that SDSS J020536.84-081424.7 is most likely a dwarf irregular galaxy (dIGal)

    Galaxy and mass assembly (GAMA) : The wavelength-dependent sizes and profiles of galaxies revealed by MegaMorph

    Get PDF
    We investigate the relationship between colour and structure within galaxies using a large, volume-limited sample of bright, low-redshift galaxies with optical-near-infrared imaging from the Galaxy AndMass Assembly survey.We fit single-component,wavelength-dependent, elliptical Sérsic models to all passbands simultaneously, using software developed by the MegaMorph project. Dividing our sample by n and colour, the recovered wavelength variations in effective radius (Re) and Sérsic index (n) reveal the internal structure, and hence formation history, of different types of galaxies. All these trends depend on n; some have an additional dependence on galaxy colour. Late-type galaxies (nr 2.5), even though they maintain constant n with wavelength, revealing that ellipticals are a superimposition of different stellar populations associated with multiple collapse and merging events. Processes leading to structures with larger Re must be associated with lower metallicity or younger stellar populations. This appears to rule out the formation of young cores through dissipative gas accretion as an important mechanism in the recent lives of luminous elliptical galaxies.Peer reviewe
    corecore