355 research outputs found

    Growth control of GaAs nanowires using pulsed laser deposition with arsenic over pressure

    Full text link
    Using pulsed laser ablation with arsenic over pressure, the growth conditions for GaAs nanowires have been systematically investigated and optimized. Arsenic over pressure with As2_2 molecules was introduced to the system by thermal decomposition of polycrystalline GaAs to control the stoichiometry and shape of the nanowires during growth. GaAs nanowires exhibit a variety of geometries under varying arsenic over pressure, which can be understood by different growth processes via vapor-liquid-solid mechanism. Single-crystal GaAs nanowires with uniform diameter, lengths over 20 μ\mum, and thin surface oxide layer were obtained and can potentially be used for further electronic characterization

    Diameter-dependent conductance of InAs nanowires

    Get PDF
    Electrical conductance through InAs nanowires is relevant for electronic applications as well as for fundamental quantum experiments. Here we employ nominally undoped, slightly tapered InAs nanowires to study the diameter dependence of their conductance. Contacting multiple sections of each wire, we can study the diameter dependence within individual wires without the need to compare different nanowire batches. At room temperature we find a diameter-independent conductivity for diameters larger than 40 nm, indicative of three-dimensional diffusive transport. For smaller diameters, the resistance increases considerably, in coincidence with a strong suppression of the mobility. From an analysis of the effective charge carrier density, we find indications for a surface accumulation layer.Comment: 9 pages, 5 figure

    Tunable few electron quantum dots in InAs nanowires

    Full text link
    Quantum dots realized in InAs are versatile systems to study the effect of spin-orbit interaction on the spin coherence, as well as the possibility to manipulate single spins using an electric field. We present transport measurements on quantum dots realized in InAs nanowires. Lithographically defined top-gates are used to locally deplete the nanowire and to form tunneling barriers. By using three gates, we can form either single quantum dots, or two quantum dots in series along the nanowire. Measurements of the stability diagrams for both cases show that this method is suitable for producing high quality quantum dots in InAs.Comment: 8 pages, 4 figure

    Effect of the GaAsP shell on optical properties of self-catalyzed GaAs nanowires grown on silicon

    Get PDF
    We realize growth of self-catalyzed core-shell GaAs/GaAsP nanowires (NWs) on Si substrates using molecular-beam epitaxy. Transmission electron microscopy (TEM) of single GaAs/GaAsP NWs confirms their high crystal quality and shows domination of the zinc-blende phase. This is further confirmed in optics of single NWs, studied using cw and time-resolved photoluminescence (PL). A detailed comparison with uncapped GaAs NWs emphasizes the effect of the GaAsP capping in suppressing the non-radiative surface states: significant PL enhancement in the core-shell structures exceeding 2000 times at 10K is observed; in uncapped NWs PL is quenched at 60K whereas single core-shell GaAs/GaAsP NWs exhibit bright emission even at room temperature. From analysis of the PL temperature dependence in both types of NW we are able to determine the main carrier escape mechanisms leading to the PL quench

    Seeing as sensing : the structuring of bodily experience in modern pictorial art

    Get PDF
    Two main arguments are developed in this thesis: first is the claim that our ability to make and understand representational pictures has a natural basis in our capacity to see. In this respect, I have drawn on the ideas of the visual scientist, David Marr and on the theory of representation expounded by John Willats. Second, I argue that the view articulated by these theorists forms a theoretical backdrop for, but does not satisfactorily explain, how pictures may heighten our sense of bodily presence. A central aim of this thesis is therefore to show how this mode of expression is also non-arbitrarily linked to the process of seeing by virtue of its relationship with our visuomotor capacities. In order to give substance to these ideas, I have attempted to weave together knowledge of art history with neuropsychological evidence and phenomenological philosophy. In applying this view to the work of particular artists, I have largely focussed on the oeuvre of Cézanne and the Cubists. However, the general form of this argument is intended to have wider implications, indicating the development of a stylistic tendency in modern art and showing how it differs from that of the Renaissance tradition. In conclusion, my thesis expresses the view that vision – and hence representation – can be divided along two separate lines: one related to a conceptual form of seeing and the other related to a bodily form of perception. The "crisis of representation" in the late nineteenth century is therefore considered indicative of a rejection of the former mode of visuality. Instead, modern artists are said to re-structure the viewing experience so that it shows the reliance of sight on the body, thus permitting the beholder a more active and constitutive role in the perception of art.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Bright single-photon sources in bottom-up tailored nanowires

    Get PDF
    The ability to achieve near-unity light extraction efficiency is necessary for a truly deterministic single photon source. The most promising method to reach such high efficiencies is based on embedding single photon emitters in tapered photonic waveguides defined by top-down etching techniques. However, light extraction efficiencies in current top-down approaches are limited by fabrication imperfections and etching induced defects. The efficiency is further tempered by randomly positioned off-axis quantum emitters. Here, we present perfectly positioned single quantum dots on the axis of a tailored nanowire waveguide using bottom-up growth. In comparison to quantum dots in nanowires without waveguide, we demonstrate a 24-fold enhancement in the single photon flux, corresponding to a light extraction efficiency of 42 %. Such high efficiencies in one-dimensional nanowires are promising to transfer quantum information over large distances between remote stationary qubits using flying qubits within the same nanowire p-n junction.Comment: 19 pages, 6 figure

    Twinning superlattices in indium phosphide nanowires

    Full text link
    Here, we show that we control the crystal structure of indium phosphide (InP) nanowires by impurity dopants. We have found that zinc decreases the activation barrier for 2D nucleation growth of zinc-blende InP and therefore promotes the InP nanowires to crystallise in the zinc blende, instead of the commonly found wurtzite crystal structure. More importantly, we demonstrate that we can, by controlling the crystal structure, induce twinning superlattices with long-range order in InP nanowires. We can tune the spacing of the superlattices by the wire diameter and the zinc concentration and present a model based on the cross-sectional shape of the zinc-blende InP nanowires to quantitatively explain the formation of the periodic twinning.Comment: 18 pages, 4 figure

    Potential of a cyclone prototype spacer to improve in vitro dry powder delivery

    Get PDF
    Copyright The Author(s) 2013. This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPurpose: Low inspiratory force in patients with lung disease is associated with poor deagglomeration and high throat deposition when using dry powder inhalers (DPIs). The potential of two reverse flow cyclone prototypes as spacers for commercial carrierbased DPIs was investigated. Methods: Cyclohaler®, Accuhaler® and Easyhaler® were tested with and without the spacers between 30-60 Lmin-1. Deposition of particles in the next generation impactor and within the devices was determined by high performance liquid chromatography. Results: Reduced induction port deposition of the emitted particles from the cyclones was observed due to the high retention of the drug within the spacers (e.g. salbutamol sulphate (SS): 67.89 ± 6.51 % at 30 Lmin-1 in Cheng 1). Fine particle fractions of aerosol as emitted from the cyclones were substantially higher than the DPIs alone. Moreover, the aerodynamic diameters of particles emitted from the cyclones were halved compared to the DPIs alone (e.g. SS from the Cyclohaler® at 4 kPa: 1.08 ± 0.05 μm vs. 3.00 ± 0.12 μm, with and without Cheng 2, respectively) and unaltered with increased flow rates. Conclusion: This work has shown the potential of employing a cyclone spacer for commercial carrier-based DPIs to improve inhaled drug delivery.Peer reviewe
    • …
    corecore